最短路径数学建模_第1页
最短路径数学建模_第2页
最短路径数学建模_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

最短路径问题是一个非常能联系实际的问题,下面我们以具体例题来看看这类问题的解法例1、假设A、B、C、D、E各个城市之间旅费如下图所示。某人想从城市A出发游览各 2 & 0 v/ M( T9 A% V- N) e! - 城市一遍,而所用费用最少。试编程序输出结果。 ) H9 n# r2 w9 u$ O; U解这类题时同学们往往不得要领,不少同学采用穷举法把所有可能的情况全部列出,再找出其中最短的那条路径;或是采用递归或深度搜索,找出所有路径,再找出最短的那条。这两种方法可见都是费时非常多的解法,如果城市数目多的话则很可能要超时了。 _4 M5 G: M# , 7 实际上我们知道,递归、深度搜索等算法一般用于求所有解问题(例如求A出发每个城市走一遍一共有哪几种走法),而这几种算法对于求最短路径这类最优解问题显然是不合适的,以下介绍的几种算法就要优越很多。 / w: L6 |3 R5 D8 J6 F首先,对于这类图我们都应该先建立一个邻接矩阵来存放任意两点间的距离数据,以便在程序中方便调用,如下: / m# K! x& s* jconst dis:array1.5,1.5 of integer =( ( 0, 7, 3,10,15), 1 _1 w( , j$ , a e, x& U) L( 7, 0, 5,13,12), . m. A5 I C3 ?% _$ e( 3, 5, 0, 5,10), w, t7 R. M7 Y i(10,13, 5, 0,11), / d. P, Y a- d% O j(15,12,10,11, 0); ; 1 & k0 H6 Y以下是几种解法: + 1 I0 D5 a( r: L# m5 A4 L( n一、 宽度优先搜索 S2 y0 v6 E 宽度优先搜索并不是一种很优秀的算法,只里只是简单介绍一下它的算法。 S8 I A% k3 e, n0 F. C具体方法是: ; J o- J$ _: o8 I1、 从A点开始依次展开得到AB、AC、AD、AE四个新结点(第二层结点),当然每个新结点要记录下其距离; 2 p. o% k$ K3 * F j. $ 4 2、 再次以AB展开得到ABC、ABD、ABE三个新结点(第三层结点),而由AC结点可展开得到ACB、ACD、ACE三个新结点,自然AD可以展开得到ADB、ADC、ADE,AE可以展开得到AEB、AEC、AED等新结点,对于每个结点也须记录下其距离; 0 |* c# S9 h2 N/ j% E0 u l3、 再把第三层结点全部展开,得到所有的第四层结点:ABCD、ABCE、ABDC、ABDE、BEC、ABEDAEDB、AEDC,每个结点也需记录下其距离; y& p) $ Z) k2 ?4、 再把第四层结点全部展开,得到所有的第五层结点:ABCDE、ABCED、AE ! n+ n8 # F; 5 Q1 G! T/ dDBC、AEDCB,每个结点也需记录下其距离; . M! f# Q. F+ a; h$ P+ K1 Q! p+ Y5、 到此,所有可能的结点均已展开,而第五层结点中最小的那个就是题目的解了。 7 I7 : w2 ) R% a2 U1 R由上可见,这种算法也是把所有的可能路径都列出来再找最短的那条,显而易见这也是一种很费时的算法。 ( h/ e$ 3 D8 7 V9 B- b: G二、 A算法 . D0 e# _9 G CA算法是在宽度优先搜索算法的基础上,每次并不是把所有可展的结点展开,而是对所有没有展开的结点,利用一个自己确定的估价函数对所有没展开的结点进行估价,从而找出最应该被展开的结点(也就是说我们要找的答案最有可能是从该结点展开),而把该结点展开,直到找到目标结点为止。 z2 8 e5 A4 4 g这种算法最关键的问题就是如何确定估价函数,估价函数越准则越快找到答案。A算法实现起来并不难,只不过难在找准估价函数,大家可以自已找资料看看。 * z: s P m% ?三、等代价搜索法 6 G* V * D f! M; L( w _等代价搜索法也是基于宽度优先搜索上进行了部分优化的一种算法,它与A算法的相似之处都是每次只展开某一个结点(不是展开所有结点),不同之处在于:它不需要去另找专门的估价函数,而是以该结点到A点的距离作为估价值,也就是说,等代价搜索法是A算法的一种简化版本。它的大体思路是: 0 l2 Y- r! ! w 7 t1、 从A点开始依次展开得到AB(7)、AC(3)、AD(10)、AE(15)四个新结点,把第一层结点A标记为已展开,并且每个新结点要记录下其距离(括号中的数字); , B j; N- W1 R2、 把未展开过的AB、AC、AD、AE四个结点中距离最小的一个展开,即展开AC(3)结点,得到ACB(8)、ACD(16)、ACE(13)三个结点,并把结点AC标记为已展开;! l- k3 Z/ F, Q1 A6 U. C! g3、 再从未展开的所有结点中找出距离最小的一个展开,即展开AB(7)结点,得到ABC(12)、ABD(20)、ABE(19)三个结点,并把结点AB标记为已展开; + c0 z- t& R Z+ j Z4、 再次从未展开的所有结点中找出距离最小的一个展开,即展开ACB(8)结点; / S4 j* H5 e9 o9 G+ N5、 每次展开所有未展开的结点中距离最小的那个结点,直到展开的新结点中出现目标情况(结点含有5个字母)时,即得到了结果。 : Q( u) 7 z7 O由上可见,A算法和等代价搜索法并没有象宽度优先搜索一样展开所有结点,只是根据某一原则(或某一估价函数值)每次展开距离A点最近的那个结点(或是估价函数计算出的最可能的那个结点),反复下去即可最终得到答案。虽然中途有时也展开了一些并不是答案的结点,但这种展开并不是大规模的,不是全部展开,因而耗时要比宽度优先搜索小得多。 7 v8 i+ C. T) l. Y* g; n% . s例2、题目基本同例1、但只要求求A到E点的最短路径(并不要求每个城市都要走一遍)。 : A& : i+ V3 Q+ w6 w+ X% I j5 L: w* b# p题目一改,问题的关键变了,所要求的结果并不是要求每个点都要走一遍,而是不管走哪几个点,只要距离最短即可。再用宽度优先搜索已经没有什么意义了,那么等代价搜索能不能再用在这题上呢? . d( 5 x, e& t w答案是肯定的,但到底搜索到什么时候才能得到答案呢?这可是个很荆手的问题。 6 |& V: ? 1 n + p% i! T7 D是不是搜索到一个结点是以E结束时就停止呢?显然不对。 ) B4 E7 i, E, t* W- Y那么是不是要把所有以E为结束的结点全部搜索出来呢?这简直就是宽度优先搜索了,显然不对。 6 Z* D ?( k: o3 o) l实际上,应该是搜索到:当我们确定将要展开的某个结点(即所有未展开的结点中距离最小的那个点)的最后一个字母是E时,这个结点就是我们所要求的答案! : R+ B - % |8 q0 n: U那么,除了等代价搜索外,有没有其它办法了呢?下面就介绍求最短路径问题的第四种算法: ; y. R& Z- P O/ q5 M. % U: _四、Warshall算法 % o A( B! , i: A/ c4 m; q0 _ _0 C该算法的中心思想是:任意两点i,j间的最短距离(记为Dij)会等于从i点出发到达j点的以任一点为中转点的所有可能的方案中,距离最短的一个。即: 1 H8 a- - M5 K+ Dij=min(Dij,Dik+Dkj,),1=k=5。 6 _& b5 T3 C, 这样,我所就找到了一个类似动态规划的表达式,只不过这里我们不把它当作动态规划去处理,而是做一个二维数组用以存放任意两点间的最短距离,利用上述公式不断地对数组中的数据进行处理,直到各数据不再变化为止,这时即可得到A到E的最短路径。 7 k& t% I- O3 S% l9 z- B# 算法如下: 4 o0 b; * U. a% N- M, q2 1、 把上述邻接矩阵直接赋值给最短距离矩阵D; - e! V( G/ i+ w% V2、 i=1; 5 B) L/ . K0 d7 Z9 c3、 j=1; I+ I7 m$ D8 O$ e1 x0 N, I4、 repeat * o! U- G2 G8 X, O( s1 Y$ P7 t5、 c=false; 用以判断第6步是否有某个Dij值被修改过 : P5 b3 I. Q ( S6、 Dij=min(Dij,Dik+Dkj,), k=1 to 5 如果Dij被修改则c=true % h0 Y* t, a1 z7 a; q& A7、 I=I+1 3 Z6 L- L4 0 f% K B8、 J=j+1 ! j+ o) h1 T5 m M/ i2 k9 G5 R9、 Until not c 8 U2 v) W- Y/ n% C5 I10、 打印D15 # L6 O* A* t/ f这种算法是产生这样一个过程:不断地求一个数字最短距离矩阵中的数据的值,而当所有数据都已经不能再变化时,就已经达到了目标的平衡状态,这时最短距离矩阵中的值就是对应的两点间的最短距离。 9 o + / K5 ( * j e五、动态规划 & M. , G; t+ J3 动态规划算法已经成为了许多难题的首选算法,只不过在很多的题目中动态规划的算法表达式比较难找准,而恰恰最短距离问题如果用动态规划算法考虑则可以非常容易地找准那个算法表达式。 * x( _* h! M9 F$ e c我们知道,动态规划算法与递归算法的不同之处在于它们的算法表达式: 6 o T2 i9 c/ I5 O8 U: h4 R递归:类似f(n)=x1*f(n-1)+x2*f(n-2),即可以找到一个确定的关系的表达式; K0 P7 Z8 D J& V9 k m. O W* x$ n动态规划:类似f(n)=min(f(n-1)+x1,f(n-2)+x2),即我们无法找到确定关系的表达式,只能找到这样一个不确定关系的表达式,f(n)的值是动态的,随着f(n-1),f(n-2)等值的改变而确定跟谁相关。 7 Z9 E / s1 - b就本题来说,我们记f(5)为A到E点的最短距离,则f(4)为A到D点的最短距离,f(1)为A到A点的最短距离(为0)。 ; D# u R$ |1 _- I: d于是,f(5)的值应该是所有与E点相邻的点的最短距离值再加上该点到E点的直接距离(dis矩阵中的值)所得到的值中最小的一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论