混凝土结构交通版第七章受压构件的截面承载力.ppt_第1页
混凝土结构交通版第七章受压构件的截面承载力.ppt_第2页
混凝土结构交通版第七章受压构件的截面承载力.ppt_第3页
混凝土结构交通版第七章受压构件的截面承载力.ppt_第4页
混凝土结构交通版第七章受压构件的截面承载力.ppt_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章 受压构件的截面承载力,第一节 概述,受压构件:轴心受压、偏心受压,偏心受压构件:单向偏心受压、双向偏心受压,截面形式:正方形、矩形、工字型、圆形、多边形,第二节 轴心受压构件的承载力计算,第二节 轴心受压构件的承载力计算, 在实际结构中,理想的轴心受压构件几乎是不存在的。 通常由于施工制造的误差、荷载作用位置的不确定性、混凝土质量的不均匀性等原因,往往存在一定的初始偏心距。 但有些构件,如以恒载为主的等跨多层房屋的内柱、桁架中的受压腹杆等,主要承受轴向压力,可近似按轴心受压构件计算。,普通钢箍柱:箍筋的作用? 纵筋的作用?,螺旋钢箍柱:箍筋的形状为圆形,且间距较密,其作用?,纵筋的作用: 协助混凝土受压 受压钢筋最小配筋率:0.4% (单侧0.2%) 承担弯矩作用 减小持续压应力下混凝土收缩和徐变的影响。 实验表明,收缩和徐变能把柱截面中的压力由混凝土向钢筋转移,从而使钢筋压应力不断增长。压应力的增长幅度随配筋率的减小而增大。如果不给配筋率规定一个下限,钢筋中的压应力就可能在持续使用荷载下增长到屈服应力水准。,第二节 轴心受压构件的承载力计算,第二季 轴心受压构件的承载力计算,一、普通钢箍柱,轴心受压短柱,轴心受压长柱,稳定系数,稳定系数j 主要与柱的长细比l0/b有关,可靠度调整系数 0.9是考虑初始偏心的影响,以及主要承受恒载作用的轴心受压柱的可靠性。,第二节 轴心受压构件的承载力计算,二、螺旋箍筋柱,第二节 轴心受压构件的承载力计算,混凝土圆柱体三向受压状态的纵向抗压强度,第七章 钢筋混凝土受压构件的截面承载力,第二节 轴心受压构件的承载力计算,第二节 轴心受压构件的承载力计算,达到极限状态时(保护层已剥落,不考虑),第七章 钢筋混凝土受压构件的截面承载力,第二节 轴心受压构件的承载力计算,达到极限状态时(保护层已剥落,不考虑),第七章 钢筋混凝土受压构件的截面承载力,第二节 轴心受压构件的承载力计算,第七章 钢筋混凝土受压构件的截面承载力,第二节 轴心受压构件的承载力计算,采用螺旋箍筋可有效提高柱的轴心受压承载力。 如螺旋箍筋配置过多,极限承载力提高过大,则会在远未达到极限承载力之前保护层产生剥落,从而影响正常使用。 规范规定: 按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载力的50%。 对长细比过大柱,由于纵向弯曲变形较大,截面不是全部受压,螺旋箍筋的约束作用得不到有效发挥。规范规定: 对长细比l0/d大于12的柱不考虑螺旋箍筋的约束作用。 螺旋箍筋的约束效果与其截面面积Ass1和间距s有关,为保证有一定约束效果,规范规定: 螺旋箍筋的换算面积Ass0不得小于全部纵筋As 面积的25% 螺旋箍筋的间距s不应大于dcor/5,且不大于80mm,同时为方便施工,s也不应小于40mm。,第七章 钢筋混凝土 受压构件的截面承载力,第三节 矩形截面偏心受压构件的正截面 承载力计算,压弯构件 偏心受压构件,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,压弯构件 偏心受压构件,偏心距e0=0时,轴心受压构件 当e0时,即N=0时,受弯构件 偏心受压构件的受力性能和破坏形态界于轴心受压构件和受弯构件。,第三节 偏心受压构件的承载力计算,一、偏心受压构件破坏特征,偏心受压构件的破坏形态与偏心距e0和纵向钢筋配筋率有关 1、受拉破坏(大偏心受压破坏),第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,M较大,N较小,偏心距e0较大,As配筋合适,偏心受压构件的破坏形态与偏心距e0 和纵向钢筋配筋率有关 受拉破坏,第七章 受压构件的截面承载力,第三节 偏心受压构件的承载力计算, 截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展较快,首先达到屈服强度。 此后,裂缝迅速开展,受压区高度减小。 最后受压侧钢筋As 受压屈服,压区混凝土压碎而达到破坏。 这种破坏具有明显预兆,变形能力较大,破坏特征与配有受压钢筋的适筋梁相似,承载力主要取决于受拉侧钢筋。 形成这种破坏的条件是:偏心距e0较大,且受拉侧纵向钢筋配筋率合适,通常称为大偏心受压。,受拉破坏时的截面应力和受拉破坏形态 (a)截面应力 (b)受拉破坏形态,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,2、受压破坏(小偏心受压破坏) 产生受压破坏的条件有两种情况: 当相对偏心距e0/h0较小,截面全部受压或大部分受压,第六章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时,As太多,第七章 受压构件的截面承载力,第三节 偏心受压构件的承载力计算, 截面受压侧混凝土和钢筋的受力较大。 而受拉侧钢筋应力较小。 当相对偏心距e0/h0很小时,受拉侧还可能出现“反向破坏”情况。 截面最后是由于受压区混凝土首先压碎而达到破坏。 承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压区高度较大,远侧钢筋可能受拉也可能受压,破坏具有脆性性质。 第二种情况在设计应予避免,因此受压破坏一般为偏心距较小的情况,故常称为小偏心受压。,2、受压破坏 产生受压破坏的条件有两种情况: 当相对偏心距e0/h0较小。,或虽然相对偏心距e0/h0较大, 但受拉侧纵向钢筋配置较多时。,受压破坏时的截面应力和受压破坏形态 (a)、(b)截面应力 (c)受压破坏形态,第七章 受压构件的截面承载力,第三节 偏心受压构件的承载力计算,二、正截面承载力计算 偏心受压正截面受力分析方法与受弯情况是相同的,即仍采用以平截面假定为基础的计算理论。 根据混凝土和钢筋的应力-应变关系,即可分析截面在压力和弯矩共同作用下受力全过程。 对于正截面承载力的计算,同样可按受弯情况,对受压区混凝土采用等效矩形应力图。 等效矩形应力图的强度为a1 fc,等效矩形应力图的高度与中和轴高度的比值为b 。,第七章 受压构件的截面承载力,第三节 偏心受压构件的承载力计算,受拉破坏和受压破坏的界限 即受拉钢筋屈服与受压区混凝土边缘极限压应变ecu同时达到。 与适筋梁和超筋梁的界限情况类似。 因此,相对界限受压区高度仍为:,第七章 受压构件的截面承载力,第三节 偏心受压构件的承载力计算,当x xb时,当x xb时,第七章 受压构件的截面承载力,第三节 偏心受压构件的承载力计算,受拉破坏(大偏心受压),受压破坏(小偏心受压),“受拉侧”钢筋应力ss 由平截面假定可得,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,“受拉侧”钢筋应力ss,为避免采用上式出现 x 的三次方程,考虑:当x =xb,ss=fy;,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,“受拉侧”钢筋应力ss,为避免采用上式出现 x 的三次方程,考虑:当x =xb,ss=fy;,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,当x =b,ss=0,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,三、Nu-Mu相关曲线,对于给定的截面、材料强度和配筋,达到正截面承载力极限状态时,其压力和弯矩是相互关联的,可用一条Nu-Mu相关曲线表示。根据正截面承载力的计算假定,可以直接采用以下方法求得Nu-Mu相关曲线:,取受压边缘混凝土压应变等于ecu; 取受拉侧边缘应变; 根据截面应变分布,以及混凝土和钢筋的应力-应变关系,确定混凝土的应力分布以及受拉钢筋和受压钢筋的应力; 由平衡条件计算截面的压力Nu和弯矩Mu; 调整受拉侧边缘应变,重复和,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,理论计算结果 等效矩形计算结果,第六章 钢筋混凝土 受压构件的截面承载力,第三节 偏心受压构件的承载力计算,Nu-Mu相关曲线反映了在压力和弯矩共同作用下正截面承载力的规律,具有以下一些特点:,相关曲线上的任一点代表截面处于正截面承载力极限状态时的一种内力组合。 如一组内力(N,M)在曲线内侧说明截面未达到极限状态,是安全的; 如(N,M)在曲线外侧,则表明截面承载力不足。,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,当弯矩为零时,轴向承载力达到最大,即为轴心受压承载力N0(A点)。 当轴力为零时,为受弯承载力M0(C点)。,截面受弯承载力Mu与作用的轴压力N大小有关。 当轴压力较小时,Mu随N的增加而增加(CB段); 当轴压力较大时,Mu随N的增加而减小(AB段)。,第七章 钢筋混凝土 受压构件的截面承载力,第三节 偏心受压构件的承载力计算,截面受弯承载力在B点达(Nb,Mb)到最大,该点近似为界限破坏。 CB段(NNb)为受拉破坏; AB段(N Nb)为受压破坏。,对于对称配筋截面,如果截面形状和尺寸相同,砼强度等级和钢筋级别也相同,但配筋率不同,达到界限破坏时的轴力Nb是一致的。,第七章 钢筋混凝土受压构件的截面承载力,第三节 偏心受压构件的承载力计算,如截面尺寸和材料强度保持不变,Nu-Mu相关曲线随配筋率的增加而向外侧增大。,第七章 钢筋混凝土受压构件的截面承载力,附加偏心距和偏心距增大系数,四、 附加偏心距和偏心距增大系数,由于施工误差、荷载作用位置的不确定性及材料的不均匀等原因,实际工程中不存在理想的轴心受压构件。为考虑这些因素的不利影响,引入附加偏心距ea,即在正截面受压承载力计算中,偏心距取计算偏心距e0=M/N与附加偏心距ea之和,称为初始偏心距ei,参考以往工程经验和国外规范,附加偏心距ea取20mm与h/30 两者中的较大值,此处h是指偏心方向的截面尺寸。,1、附加偏心距,2、偏心距增大系数, 由于侧向挠曲变形,轴向力将产生二阶效应,引起附加弯矩。 对于长细比较大的构件,二阶效应引起附加弯矩不能忽略。 图示典型偏心受压柱,跨中侧向挠度为 f 。 对跨中截面,轴力N的偏心距为ei + f ,即跨中截面的弯矩为 M =N ( ei + f )。 在截面和初始偏心距相同的情况下,柱的长细比l0/h不同,侧向挠度 f 的大小不同,影响程度会有很大差别,将产生不同的破坏类型。,第七章 钢筋混凝土受压构件的截面承载力,附加偏心距和偏心距增大系数, 对于长细比l0/h8的短柱。 侧向挠度 f 与初始偏心距ei相比很小。 柱跨中弯矩M=N(ei+f ) 随轴力N的增加基本呈线性增长。 直至达到截面承载力极限状态产生破坏。 对短柱可忽略侧向挠度f影响。,第七章 钢筋混凝土受压构件的截面承载力,附加偏心距和偏心距增大系数, 长细比l0/h =830的中长柱。 f 与ei相比已不能忽略。 f 随轴力增大而增大,柱跨中弯矩M = N ( ei + f ) 的增长速度大于轴力N的增长速度。 即M随N 的增加呈明显的非线性增长。, 虽然最终在M和N的共同作用下达到截面承载力极限状态,但轴向承载力明显低于同样截面和初始偏心距情况下的短柱。 因此,对于中长柱,在设计中应考虑侧向挠度 f 对弯矩增大的影响。,第七章 钢筋混凝土受压构件的截面承载力,附加偏心距和偏心距增大系数,第七章 钢筋混凝土受压构件的截面承载力,附加偏心距和偏心距增大系数,长细比l0/h 30的长柱 侧向挠度 f 的影响已很大 在未达到截面承载力极限状态之前,侧向挠度 f 已呈不稳定发展 即柱的轴向荷载最大值发生在荷载增长曲线与截面承载力Nu-Mu相关曲线相交之前 这种破坏为失稳破坏,应进行专门计算,偏心距增大系数,,,,,取h=1.1h0,第七章 钢筋混凝土受压构件的截面承载力,附加偏心距和偏心距增大系数,l0,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,五、 矩形截面正截面承载力设计计算,(一)、不对称配筋截面设计 1、大偏心受压(受拉破坏),已知:截面尺寸(bh)、材料强度( fc、fy,fy )、构件长细比(l0/h)以及轴力N和弯矩M设计值, 若heieib.min=0.3h0, 一般可先按大偏心受压情况计算,As和As均未知时,两个基本方程中有三个未知数,As、As和 x,故无唯一解。 与双筋梁类似,为使总配筋面积(As+As)最小? 可取x=xbh0得,若As0.002bh? 则取As=0.002bh,然后按As为已知情况计算。,若Asrminbh ? 应取As=rminbh。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As小于rminbh? 应取As=rminbh。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a ?,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As若小于rminbh? 应取As=rminbh。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a ?,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As若小于rminbh? 应取As=rminbh。,若As若小于rminbh? 应取As=rminbh。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a ?,2、小偏心受压(受压破坏) heieib.min=0.3h0,两个基本方程中有三个未知数,As、As和x,故无唯一解。,小偏心受压,即x xb,ss - fy ,则As未达到受压屈服 因此,当xb x (2b -xb),As 无论怎样配筋,都不能达到屈服, 为使用钢量最小,故可取As =max(0.45ft/fy, 0.002bh)。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,另一方面,当偏心距很小时,如附加偏心距ea与荷载偏心距e0方向相反, 则可能发生As一侧混凝土首先达到受压破坏的情况,这种情况称为“反向破坏”。 此时通常为全截面受压,由图示截面应力分布,对As取矩,可得,,e=0.5h-a-(e0-ea), h0=h-a,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,确定As后,就只有x 和As两个未知数,故可得唯一解。 根据求得的x ,可分为三种情况,若x (2b -xb),ss= -fy,基本公式转化为下式,,若x h0h,应取x=h,同时应取a =1,代入基本公式直接解得As,第七章 钢筋混凝土 受压构件的截面承载力,矩形截面正截面承载力设计计算,重新求解x 和As,由基本公式求解x 和As的具体运算是很麻烦的。 迭代计算方法 用相对受压区高度x ,,在小偏压范围x =xb1.1,,第七章 受压构件的截面承载力,矩形截面正截面承载力设计计算,对于HRB335级钢筋和C50混凝土,as在0.40.5之间,近似取0.45,as=x(1-0.5x) 变化很小。,As(1)的误差最大约为12%。 如需进一步求较为精确的解,可将As(1)代入基本公式求得x。,矩形截面正截面承载力设计计算,取as =0.45,试分析证明上述迭代是收敛的,且收敛速度很快。,第七章 钢筋混凝土受压构件的截面承载力,五 、不对称配筋截面复核,在截面尺寸(bh)、截面配筋As和As、材料强度(fc、fy,f y)、以及构件长细比(l0/h)均为已知时,根据构件轴力和弯矩作用方式,截面承载力复核分为两种情况: 1、给定轴力设计值N,求弯矩作用平面的弯矩设计值M,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,五、不对称配筋截面复核,在截面尺寸(bh)、截面配筋As和As、材料强度(fc、fy,f y)、以及构件长细比(l0/h)均为已知时,根据构件轴力和弯矩作用方式,截面承载力复核分为两种情况: 1、给定轴力设计值N,求弯矩作用平面的弯矩设计值M,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,2、给定轴力作用的偏心距e0,求轴力设计值N,五、不对称配筋截面复核,在截面尺寸(bh)、截面配筋As和As、材料强度(fc、fy,f y)、以及构件长细比(l0/h)均为已知时,根据构件轴力和弯矩作用方式,截面承载力复核分为两种情况: 1、给定轴力设计值N,求弯矩作用平面的弯矩设计值M,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,2、给定轴力作用的偏心距e0,求轴力设计值N,1、给定轴力设计值N,求弯矩作用平面的弯矩设计值M 由于给定截面尺寸、配筋和材料强度均已知,未知数 只有x和M两个。,若N Nb,为大偏心受压,,若N Nb,为小偏心受压,,由(a)式求x以及偏心距增大系数h,代入(b)式求e0,弯矩设计值为M=N e0。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,2、给定轴力作用的偏心距e0,求轴力设计值N,若heie0b,为大偏心受压,未知数为x和N两个,联立求解得x和N。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,若heie0b,为小偏心受压 联立求解得x和N, 尚应考虑As一侧混凝土可能出现反向破坏的情况,e=0.5h-a-(e0-ea),h0=h-a,另一方面,当构件在垂直于弯矩作用平面内的长细比l0/b较大时,尚应根据l0/b确定的稳定系数j,按轴心受压情况验算垂直于弯矩作用平面的受压承载力 上面求得的N 比较后,取较小值。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,六、对称配筋截面 实际工程中,受压构件常承受变号弯矩作用,当弯矩数值相差不大,可采用对称配筋。 采用对称配筋不会在施工中产生差错,故有时为方便施工或对于装配式构件,也采用对称配筋。 对称配筋截面,即As=As,fy = fy,a = a,其界限破坏状态时的轴力为Nb=a fcbxbh0。,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,因此,除要考虑偏心距大小外,还要根据轴力大小(N Nb)的情况判别属于哪一种偏心受力情况。,1、当heieib.min=0.3h0,且N Nb时,为大偏心受压 x=N /a fcb,若x=N /a fcb2a,可近似取x=2a,对受压钢筋合力点取矩可得,e = hei - 0.5h + a,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,2、当heieib.min=0.3h0,为小偏心受压 或heieib.min=0.3h0,但N Nb时,为小偏心受压,由第一式解得,代入第二式得,这是一个x 的三次方程,设计中计算很麻烦。为简化计算,如前所说,可近似取as=x(1-0.5x)在小偏压范围的平均值,,代入上式,第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,由前述迭代法可知,上式配筋实为第二次迭代的近似值,与精确解的误差已很小,满足一般设计精度要求。 对称配筋截面复核的计算与非对称配筋情况相同。,第四节 工形截面正截面承载力计算(自学),第七章 钢筋混凝土受压构件的截面承载力,矩形截面正截面承载力设计计算,受压构件斜截面承载力计算,第五节 受压构件的斜截面受剪承载力,一、单向受剪承载力,压力的存在 延缓了斜裂缝的出现和开展 斜裂缝角度减小 混凝土剪压区高度增大,第七章 钢筋混凝土受压构件的截面承载力,但当压力超过一定数值?,受压构件斜截面承载力计算,第七章 钢筋混凝土受压构件的截面承载力,由桁架-拱模型理论,轴向压力主要由拱作用直接传递,拱作用增大,其竖向分力为拱作用分担的抗剪能力。 当轴向压力太大,将导致拱机构的过早压坏。,受压构件斜截面承载力计算,第七章 钢筋混凝土受压构件的截面承载力,对矩形,T形和I形截面,规范偏心受压构件的受剪承载力计算公式,l为计算截面的剪跨比,对框架柱,l=M/Vh0,当l3时,取l=3;对其他偏心受压构件,均布荷载时,取l=1.5; 对偏心受压构件,l= a /h0,当l3时,取l=3;a为集中荷载至支座或节点边缘的距离。 N为与剪力设计值相应的轴向压力设计值,当N0.3fcA时,取N=0.3fcA,A为构件截面面积。,为防止配箍过多产生斜压破坏,受剪截面应满足,可不进行斜截面受剪承载力计算,而仅需按构造要求配置箍筋。,受压构件斜截面承载力计算,第七章 钢筋混凝土受压构件的截面承载力,第七章 钢筋混凝土受压构件的截面承载力,受压构件一般构造要求,第六节 受压构件一般构造要求,材料强度: 混凝土:受压构件的承载力主要取决于混凝土强度,一般应采用强度等级较高的混凝土。目前我国一般结构中柱的混凝土强度等级常用C25C40,在高层建筑中,C50C60级混凝土也经常使用。 钢筋:通常采用HRB335级和HRB400级钢筋,不宜过高。,截面形状和尺寸: 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。 圆形截面主要用于桥墩、桩和公共建筑中的柱。 柱的截面尺寸不宜过小,一般应控制在l0/b30及l0/h25。 当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。,第七章 钢筋混凝土受压构件的截面承载力,受压构件一般构造要求,纵向钢筋: 纵向钢筋配筋率过小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论