2019版高考数学复习坐标系与参数方程课时达标68参数方程.docx_第1页
2019版高考数学复习坐标系与参数方程课时达标68参数方程.docx_第2页
2019版高考数学复习坐标系与参数方程课时达标68参数方程.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第68讲 参数方程解密考纲高考中,主要涉及曲线的极坐标方程、曲线的参数方程、极坐标方程与直角坐标方程的互化、参数方程与普通方程的互化,两种不同方式的方程的互化是考查的热点,常以解答题的形式出现1已知曲线C1:(t为参数),C2:(为参数)(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值解析 (1)C1:(x4)2(y3)21,C2:1.C1是圆心为(4,3),半径为1的圆C2是中心为坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆(2)当t时,P(4,4),Q(8cos ,3sin ),故M.C3为直线x2y70,M到C3的距离d|4cos 3sin 13|5cos()13|.从而当cos ,sin 时,d取得最小值.2已知直线l:(t为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程2cos .(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|MB|的值解析 (1)2cos 等价于22cos ,将2x2y2,cos x代入,得曲线C的直角坐标方程为x2y22x0.(2)将代入,得t25t180,设这个方程的两个实根分别为t1,t2,则由参数t的几何意义即知|MA|MB|t1t2|18.3在极坐标系中,圆C的圆心为C,半径为2.以极点为原点,极轴为x轴的正半轴,取相同的长度单位建立平面直角坐标系,直线l的参数方程为(t为参数)(1)求圆C的极坐标方程;(2)设l与圆的交点为A,B,l与x轴的交点为P,求|PA|PB|.解析 (1)在直角坐标系中,圆心为C(1,),所以圆C的方程为(x1)2(y)24,即x2y22x2y0,化为极坐标方程得22cos 2sin 0,即4sin .(2)把代入x2y22x2y0,得t24,所以点A,B对应的参数分别为t12,t22.令t0得点P对应的参数为t02.所以|PA|PB|t1t0|t2t0|22|22|22(22)4.4已知曲线C的参数方程是(为参数),直线l的参数方程为(t为参数)(1)求曲线C与直线l的普通方程;(2)若直线l与曲线C相交于P,Q两点,且|PQ|,求实数m的值解析 (1)由得22得曲线C的普通方程为x2(ym)21.由x1t,得tx1,代入y4t,得y42(x1),所以直线l的普通方程为y2x2.(2)圆心(0,m)到直线l的距离为d,所以221,解得m3或m1.5(2016全国卷)在直角坐标系xOy中,曲线C1的参数方程为(为参数)以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为sin2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求的最小值及此时P的直角坐标解析 (1)C1的普通方程为y21,C2的直角坐标方程为xy40.(2)由题意,可设点P的直角坐标为(cos ,sin )因为C2是直线,所以|PQ|的最小值即为P到C2的距离d()的最小值,d().当且仅当2k(kZ)时,d()取得最小值,最小值为,此时P的直角坐标为.6(2017江苏卷)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数)设P为曲线C上的动点,求点P到直线l的距离的最小值解析 直线l的普通方程为x2y80.因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论