全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时达标第14讲解密考纲本考点主要考查利用导数研究函数的单调性高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现三种题型均有出现,以解答题为主,难度较大一、选择题1函数yf(x)的图象如图所示,则yf(x)的图象可能是(D) 解析由函数f(x)的图象可知,f(x)在(,0)上单调递增,f(x)在(0,)上单调递减,所以在(,0)上f(x)0,在(0,)上f(x)0,故选D2函数f(x)xln x的单调递减区间为(A)A(0,1)B(0,)C(1,)D(,0)(1,)解析函数的定义域是(0,),且f(x)1,令f(x)0,解得0x0”是“f(x)在R上单调递增”的(A)A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解析f(x)x2a,当a0时,f(x)0恒成立,故“a0”是“f(x)在R上单调递增”的充分不必要条件4(2016全国卷)函数y2x2e|x|在2,2的图象大致为(D)解析易知y2x2e|x|是偶函数,设f(x)2x2e|x|,则f(2)222e28e2,所以0f(2)1,所以排除A项,B项;当0x2时,y2x2ex,所以y4xex,又(y)4ex,当0x0,当ln 4x2时,(y)0的解集为(D)A(,2)(1,)B(,2)(1,2)C(,1)(1,0)(2,)D(,1)(1,1)(3,)解析由题图可知,f(x)0,则x(,1)(1,),f(x)0等价于或即或解得x(,1)(1,1)(3,)6已知a0,函数f(x)(x22ax)ex,若f(x)在1,1上是单调减函数,则a的取值范围是(C)ABCD解析f(x)(2x2a)ex(x22ax)exx2(22a)x2aex,由题意知当x1,1时,f(x)0恒成立,即x2(22a)x2a0恒成立令g(x)x2(22a)x2a,则有即解得a.二、填空题7函数f(x)x315x233x6的单调减区间为_(1,11)_.解析由f(x)x315x233x6得f(x)3x230x33,令f(x)0,即3(x11)(x1)0,解得1x11,所以函数f(x)的单调减区间为(1,11)8幂函数f(x)xn23n(nZ)在(0,)上是减函数,则n_1或2_.解析f(x)在(0,)上是减函数,n23n0,解得0n0,故函数exf(x)ex2x在(,)上为增函数,故符合要求;对于,exf(x)ex3x,故exf(x)(ex3x)ex3x(1ln 3)0,故函数exf(x)ex(x22)在(,)上为增函数,故符合要求综上,具有M性质的函数的序号为.三、解答题10已知函数f(x)(k为常数,e是自然对数的底数),曲线yf(x)在点(1,f(1)处的切线与x轴平行(1)求k的值;(2)求f(x)的单调区间解析(1)由题意得f(x),又f(1)0,故k1(2)由(1)知,f(x).设h(x)ln x1(x0),则h(x)0,即h(x)在(0,)上是减函数由h(1)0知,当0x0,从而f(x)0;当x1时,h(x)0,从而f(x)0,f(x),f(x)的变化如下.x(0,1)1(1,3)3(3,)f(x)00f(x)单调递增单调递减单调递增f(x)的单调递增区间为(0,1)和(3,),递减区间为(1,3),要使函数f(x)在区间上是单调函数,则10,求函数f(x)的单调区间;(3)设函数g(x)f(x)2x,且g(x)在区间(2,1)内存在单调递减区间,求实数a的取值范围解析(1)f(x)x2axb,由题意得即(2)由(1)得,f(x)x2axx(xa)(a0),当x(,0)时,f(x)0;当x(0,a)时,f(x)0.所以函数f(x)的增区间为(,0)和(a,),减区间为(0,a)(3)g(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投资入股合作协议书模板
- 余甘子种苗生产技术规程
- 2024年培训班兼职教师聘用合同模板
- 建筑行业劳动合同范本
- 回收协议书范本2024年
- 个人车位买卖协议样本
- 2024年三人结伙协议书范本
- 合作项目保密协议书2024年
- 版权承包协议样本
- 房地产合同范本:房屋出售协议书
- 分解因式-十字相乘法
- 薄荷的栽培技术
- 副食品、蔬菜、水果、肉类配送项目(完整版)投标文件
- 新大气污染防治法培训课件
- 部编版三年级上册道德与法治第一单元《快乐学习》知识要点归纳
- 浙江省金华市2022-2023学年六年级上学期期中科学试卷
- TDS3000基本操作TDS3000基本操作
- 教师资格证必背时政类教育热点
- 政府采购基础知识培训(最终稿)
- 建筑业企业资质管理制度
- 被执行人财产线索提供书(模板)
评论
0/150
提交评论