




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(二十三) 平面向量数量积的坐标表示、模、夹角层级一学业水平达标1已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A.B3C D3解析:选D向量a在b方向上的投影为3.选D.2设xR,向量a(x,1),b(1,2),且ab,则|ab|()A. B.C2 D10解析:选B由ab得ab0,x11(2)0,即x2,ab(3,1),|ab|.3已知向量a(2,1),b(1,k),a(2ab)0,则k()A12 B6C6 D12解析:选D2ab(4,2)(1,k)(5,2k),由a(2ab)0,得(2,1)(5,2k)0,102k0,解得k12.4a,b为平面向量,已知a(4,3),2ab(3,18),则a,b夹角的余弦值等于()A. BC. D解析:选C设b(x,y),则2ab(8x,6y)(3,18),所以解得故b(5,12),所以cosa,b.5已知A(2,1),B(6,3),C(0,5),则ABC的形状是()A直角三角形 B锐角三角形C钝角三角形 D等边三角形解析:选A由题设知(8,4),(2,4),(6,8),28(4)40,即.BAC90,故ABC是直角三角形6设向量a(1,2m),b(m1,1),c(2,m)若(ac)b,则|a|_.解析:ac(3,3m),由(ac)b,可得(ac)b0,即3(m1)3m0,解得m,则a(1,1),故|a|.答案:7已知向量a(1,),2ab(1,),a与2ab的夹角为,则_.解析:a(1,),2ab(1,),|a|2,|2ab|2,a(2ab)2,cos ,.答案:8已知向量a(,1),b是不平行于x轴的单位向量,且ab,则向量b的坐标为_解析:设b(x,y)(y0),则依题意有解得故b.答案:9已知平面向量a(1,x),b(2x3,x),xR.(1)若ab,求x的值;(2)若ab,求|ab|.解:(1)若ab,则ab(1,x)(2x3,x)1(2x3)x(x)0,即x22x30,解得x1或x3.(2)若ab,则1(x)x(2x3)0,即x(2x4)0,解得x0或x2.当x0时,a(1,0),b(3,0),ab(2,0),|ab|2.当x2时,a(1,2),b(1,2),ab(2,4),|ab|2.综上,|ab|2或2.10在平面直角坐标系xOy中,已知点A(1,4),B(2,3),C(2,1)(1)求及|;(2)设实数t满足(t),求t的值解:(1)(3,1),(1,5),31(1)(5)2.(2,6),|2.(2)t(32t,1t),(2,1),且(t),(t)0,(32t)2(1t)(1)0,t1.层级二应试能力达标1设向量a(1,0),b,则下列结论中正确的是()A|a|b|BabCab与b垂直 Dab解析:选C由题意知|a|1,|b|,ab10,(ab)bab|b|20,故ab与b垂直2已知向量(2,2),(4,1),在x轴上有一点P,使有最小值,则点P的坐标是()A(3,0) B(2,0)C(3,0) D(4,0)解析:选C设P(x,0),则(x2,2),(x4,1),(x2)(x4)2x26x10(x3)21,故当x3时,最小,此时点P的坐标为(3,0)3若a(x,2),b(3,5),且a与b的夹角是钝角,则实数x的取值范围是()A. B.C. D.解析:选Cx应满足(x,2)(3,5)0且a,b不共线,解得x,且x,x.4已知(3,1),(0,5),且, (O为坐标原点),则点C的坐标是()A. B.C. D.解析:选B设C(x,y),则(x,y)又(3,1),(x3,y1),5(x3)0(y1)0,x3.(0,5),(x,y5),(3,4),3x4(y5)0,y,C点的坐标是.5平面向量a(1,2),b(4,2),cmab(mR),且c与a的夹角等于c与b的夹角,则m_.解析:因为向量a(1,2),b(4,2),所以cmab(m4,2m2),所以acm42(2m2)5m8,bc4(m4)2(2m2)8m20.因为c与a的夹角等于c与b的夹角,所以,即,所以,解得m2.答案:26已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为_;的最大值为_解析: 以D为坐标原点,建立平面直角坐标系如图所示则D(0,0),A(1,0),B(1,1),C(0,1),设E(1,a)(0a1)所以(1,a)(1,0)1,(1,a)(0,1)a1,故的最大值为1.答案:117已知a,b,c是同一平面内的三个向量,其中a(1,2)(1)若|c|2,且ca,求c的坐标;(2)若|b|,且a2b与2ab垂直,求a与b的夹角.解:(1)设c(x,y),|c|2,2,x2y220.由ca和|c|2,可得解得或故c(2,4)或c(2,4)(2)(a2b)(2ab),(a2b)(2ab)0,即2a23ab2b20,253ab20,整理得ab,cos 1.又0,.8已知(4,0),(2,2),(1) (2)(1)求及在上的投影;(2)证明A,B,C三点共线,且当时,求的值;(3)求|的最小值解:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时间的换算及计算(教学设计)-2024-2025学年三年级上册数学人教版
- 2024年泰山版小学信息技术二年级上册《11 你说我讲大家谈》教学设计
- 二零二五版建筑工程保险合同页5
- 二零二五委托招标代理合同
- 油性圆珠用油性墨水企业制定与实施新质生产力战略研究报告
- 建筑沙石企业制定与实施新质生产力战略研究报告
- 标准类书籍出版服务行业跨境出海战略研究报告
- 天然大理石染色石粉粒行业直播电商战略研究报告
- 二零二五事故应对处置信息
- 书法艺术创作行业直播电商战略研究报告
- 神经发育障碍
- 低血容量性休克急救护理课件
- 冷却塔热力计算书1
- 小于胎龄儿和大于胎龄儿课件
- 第八章土壤退化过程与环境质量课件
- 好书推荐-三国演义课件
- 图书馆读者服务课件
- 以人为本的一体化卫生服务模式(PCIC)
- 我与地坛读书分享
- 车辆维修质量保证措施
- 铝材切割机操作规程
评论
0/150
提交评论