




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(二次函数)命题方向:二次函数与一次函数在初中数学中是最重要知识点之一,也同样是历届中考题的重要考点。二次函数既是函数知识的重点,也是难点。这部分知识命题范围广,形式多样。既有单一知识点考查的选择题和填空题,也有解答题。备考攻略:尤其是与实际生活中的应用问题,与方程、几何、三角函数等知识相结合的综合题是命题的重点内容,同时二次函数内容被各省、市作为压轴题的频率最高,对于这部分内容要掌握二次函数的相关概念、顶点坐标、对称轴、图象性质、图象平移、极值问题。巩固练习:1有这样一个问题:探究函数y=x2+的图象与性质小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是;(2)下表是y与x的几组对应值 x321 1 2 3 y m求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)(2 在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线3 y=x1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围(3请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式,y=4在平面直角坐标系xOy中,抛物线y=mx22mx2(m0)与y轴交于点A,其对称轴与x轴交于点B(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在2x1这一段位于直线l的上方,并且在2x3这一段位于直线AB的下方,求该抛物线的解析式)5抛物线y=x26x+5的顶点坐标为()A(3,4)B(3,4)C(3,4)D(3,4)6在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,2),B(3,4)(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点)若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围(7在平面直角坐标系xOy中,抛物线y=mx22mx+m1(m0)与x轴的交点为A,B(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点当m=1时,求线段AB上整点的个数;若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围8.对某一个函数给出如下定义:若存在实数M0,对于任意的函数值y,都满足MyM,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值例如,如图中的函数是有界函数,其边界值是1(1)分别判断函数 y=(x0)和y=x+1(4x2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=x+1(axb,ba)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数 y=x2(1xm,m0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足t1?(9.已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围(10.象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A的坐标;(2)当ABC=45时,求m的值;(3)已知一次函数y2=kx+b,点P(n,0)是x轴上的一个动点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论