2017-2018学年中考数学压轴题分类练习动点相似全等专题.docx_第1页
2017-2018学年中考数学压轴题分类练习动点相似全等专题.docx_第2页
2017-2018学年中考数学压轴题分类练习动点相似全等专题.docx_第3页
2017-2018学年中考数学压轴题分类练习动点相似全等专题.docx_第4页
2017-2018学年中考数学压轴题分类练习动点相似全等专题.docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

动点相似(全等)专题1如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,点在线段上运动,若以,为顶点的三角形与相似,求点的坐标;点在轴上自由运动,若三个点,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,三点为“共谐点”.请直接写出使得,三点成为“共谐点”的的值.2(2017四川省眉山市)如图,抛物线与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,)是抛物线上另一点(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NHAC交抛物线的对称轴于H点设ON=t,ONH的面积为S,求S与t之间的函数关系式3定义:点P是ABC内部或边上的点(顶点除外),在PAB,PBC,PCA中,若至少有一个三角形与ABC相似,则称点P是ABC的自相似点例如:如图1,点P在ABC的内部,PBC=A,PCB=ABC,则BCPABC,故点P是ABC的自相似点请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线(x0)上的任意一点,点N是x轴正半轴上的任意一点(1)如图2,点P是OM上一点,ONP=M,试说明点P是MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求MON的自相似点的坐标;(3)是否存在点M和点N,使MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由4(2017年湖北省宜昌市第24题)已知抛物线,其中,且.(1)直接写出关于的一元二次方程的一个根;(2)证明:抛物线的顶点在第三象限;(3)直线与轴分别相交于两点,与抛物线相交于两点.设抛物线的对称轴与轴相交于,如果在对称轴左侧的抛物线上存在点,使得与相似.并且,求此时抛物线的表达式.5如图,已知抛物线与轴交于两点,与轴交于点,且,直线与轴交于点,点是抛物线上的一动点,过点作轴,垂足为,交直线l于点.(1)试求该抛物线的表达式;(2)如图(1),若点在第三象限,四边形是平行四边形,求点的坐标;(3)如图(2),过点作轴,垂足为,连接, 求证:是直角三角形;试问当点横坐标为何值时,使得以点为顶点的三角形与相似?6如图所示,在平面直角坐标系中,C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点已知抛物线开口向上,与C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8SQAB,且QABOBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由7.已知二次函数y=x2+bx+c+1,当b=1时,求这个二次函数的对称轴的方程; 若c=b22b,问:b为何值时,二次函数的图象与x轴相切?若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足,求二次函数的表达式8. 如图,已知抛物线的对称轴是y轴,且点(2,2),(1,)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作PAx轴于A,PCy轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N的对称点,D是C点关于N的对称点(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:DPEPAM,并求出当它们的相似比为时的点P的坐标9. 抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0)(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PMy轴,分别与x轴和直线CD交于点M、N连结PC、PD,如图1,在点P运动过程中,PCD的面积是否存在最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论