



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课下能力提升(七)平行关系的判定一、选择题1已知b是平面外的一条直线,下列条件中,可得出b的是()Ab与内的一条直线不相交Bb与内的两条直线不相交Cb与内的无数条直线不相交Db与内的所有直线不相交2空间四边形ABCD中,E,F分别是AB和BC上的点,若AEEBCFFB13,则对角线AC和平面DEF的关系是()A平行B相交C在平面内 D平行或相交3如图是正方体的平面展开图,则在这个正方体中,下列判断正确的是()A平面BME平面ACNBAFCNCBM平面EFDDBE与AN相交4已知m,n表示两条直线,表示平面,下列结论中正确的个数是()若m,n,mn,则;若m,n相交且都在,外,且m,m,n,n,则;若m,m,则;若m,n,且mn,则A1 B2C3 D45在正方体ABCDA1B1C1D1中,M是棱A1D1上的动点,则直线MD与平面A1ACC1的位置关系是()A平行 B相交C在平面内 D相交或平行二、填空题6点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,则空间四边形的六条棱中与平面EFGH平行的条数是_7三棱锥SABC中,G为ABC的重心,E在棱SA上,且AE2ES,则EG与平面SBC的关系为_8如图,在正方体ABCDA1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足_时,有MN平面B1BDD1.三、解答题9已知:ABC中,ACB90,D,E分别为AC,AB的中点,沿DE将ADE折起,使A到A的位置,M是AB的中点,求证:ME平面ACD.10如图,在正方体ABCDA1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC的中点求证:(1)EG平面BDD1B1;(2)平面EFG平面BDD1B1.答 案1. 解析:选D若b与内的所有直线不相交,即b与无公共点,故b.2. 解析:选A如图所示,在平面ABC内,因为AEEBCFFB13,所以ACEF.又因为AC 平面DEF,EF 平面DEF,所以AC平面DEF.3. 解析:选A作出如图所示的正方体易知ANBM,ACEM,且ANACA,所以平面ACN平面BEM.4. 解析:选A仅满足m,n,mn,不能得出,不正确;设m,n确定平面为,则有,从而,正确;均不满足两个平面平行的条件,故均不正确5. 解析:选D当M与D1重合时,DD1A1A,DD1面AA1C1C,AA1面AA1C1C,MD面AA1C1C.当M不与D1重合时,DM与AA1相交,也即DM与面AA1C1C相交6. 解析:由线面平行的判定定理知:BD平面EFGH,AC平面EFGH.答案:27. 解析:如图,取BC中点F,连SF.G为ABC的重心,A,G,F共线且AG2GF.又AE2ES,EGSF.又SF 平面SBC,EG平面SBC,EG平面SBC.答案:EG平面SBC8. 解析:HNBD,HFDD1,HNHFH,BDDD1D,平面NHF平面B1BDD1,故线段FH上任意点M与N连接,有MN平面B1BDD1.答案:M线段FH9. 证明:如图所示,取AC的中点G,连接MG,GD,M,G分别是AB,AC的中点,MGBC,同理DEBC,MGDE,四边形DEMG是平行四边形,MEDG.又ME 平面ACD,DG平面ACD,ME平面ACD.10. 证明:(1)如图所示,连接SB.E,G分别是BC,SC的中点,EGSB.又SB 平面BDD1B1,EG平面BDD1B1,EG平面BDD1B1.(2)F,E分别是DC,BC的中点,FEBD.又BD 平面BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电话客服培训方案
- 广西2025年03月广西防城港市港口区医疗保障局公开招考1名编外聘用人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 防诈骗课件下载平台
- 2025年04月浙江义乌市机关事业单位编外聘用人员公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 管理学与领导艺术
- 知识树说课稿
- 戴维斯管理信息系统
- 2025年03月浙江永康市信访局编外工作人员公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 防诈骗幼儿园课件视频
- Braden压疮评分量表的解读
- 健康日用品设计与研发趋势
- 【化学】常见的盐(第1课时)-2024-2025学年九年级化学下册(人教版2024)
- 《罗秀米粉加工技术规程》 编制说明
- 2024年江苏省无锡市中考英语试卷
- 《湖南省房屋建筑和市政工程消防质量控制技术标准》
- 充电桩安全巡查记录表
- 《公路工程现浇泡沫聚合土应用技术规程》
- 2025届云南省民族大学附属中学高三(最后冲刺)数学试卷含解析
- 品管圈PDCA获奖案例-新生儿科运用PDCA循环缩短早产儿完全经口喂养过渡时间成果汇报
- 河流沿岸护栏安装工程协议
- 工程四新培训
评论
0/150
提交评论