半导体制造技术期末题库参考答案.pdf_第1页
半导体制造技术期末题库参考答案.pdf_第2页
半导体制造技术期末题库参考答案.pdf_第3页
半导体制造技术期末题库参考答案.pdf_第4页
半导体制造技术期末题库参考答案.pdf_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1分别简述 RVD 和 GILD 的原理, 它们的优缺点及应用方向。分别简述 RVD 和 GILD 的原理, 它们的优缺点及应用方向。 答:快速气相掺杂快速气相掺杂(RVD, Rapid Vapor-phase Doping)是一种掺杂剂从气相直接向硅中扩散、 并能形成超浅结的快速掺杂工艺。 原理是利用快速热处理过程(RTP)将处在掺杂剂气氛中 的硅片快速均匀地加热至所需要的温度,同时掺杂剂发生反应产生杂质院子,杂质原子 直接从气态转变为被硅表面吸附的固态,然后进行固相扩散,完成掺杂目的。 RVD 技术的优势(与离子注入相比,特别是在浅结的应用上) :RVD 技术并不受注入所 带来的一些效应的影响,如:沟道效应、晶格损伤或使硅片带电。 RVD 技术的劣势:对于选择扩散来说,采用 RVD 工艺仍需要掩膜。另外,RVD 仍然要在 较高温度下完成。杂质分布是非理想的指数形式,类似固态扩散,其峰值处于表面处。 应用方向:主要应用在 ULSI 工艺中,例如对 DRAM 中电容的掺杂,深沟侧墙的掺杂, 甚至在 CMOS 浅源漏结的制造中也采用 RVD 技术。 气体浸没激光掺杂气体浸没激光掺杂(GILD:Gas Immersion Laser Doping)的工作原理:使用激光器照射处 于气态源中的硅表面,使硅表面因吸收能量而变为液体层,同时气态掺杂源由于热解或 光解作用产生杂质原子,杂质原子通过液相扩散进入很薄的硅液体层,当激光照射停止 后,掺有杂质的液体层通过固相外延转变为固态结晶体,从而完成掺杂。 GILD 的优点:杂质在液体中的扩散速度非常快,使得其分布均匀,因而可以形成陡峭的 杂质分布形式。由于有再结晶过程,所以不需要做进一步的热退火。掺杂仅限于表面, 不会发生向内扩散,体内的杂质分布没有任何扰动。可以用激光束的能量和脉冲时间决 定硅表面融化层的深度。在一个系统中相继完成掺杂,退火和形成图形,极大简化了工 艺,降低系统的工艺设备成本。 GILD 的缺点:集成工艺复杂,技术尚不成熟。 GILD 的应用:MOS 与双极器件的制造,可以制备突变型杂质分布,超浅深度和极低的 串联电阻。 2集成电路制造中有哪几种常见的扩散工艺?各有什么特点?集成电路制造中有哪几种常见的扩散工艺?各有什么特点? 答:按照原始扩散杂质源在室温下的相态可将扩散分为三类:固态源扩散,液态源扩散 与气态源扩散。 (1) 固态源扩散固态源扩散:常见的主要有开管扩散、箱法扩散和涂源法扩散 a.开管扩散是把杂质源和硅片分开放置在扩散炉管中,通过惰性气体将杂质蒸汽输 运只硅片表面。其特点是温度对杂质浓度和杂质分布有着直接的影响,重复性与稳 定性都很好。 b.箱法扩散是把杂质源和硅片壮在由石英或者硅做成的箱内,在氮气或氩气的保护 下进行扩散。其特点是扩散源多为杂质的氧化物,箱子具有一定的密闭性。含有杂 质的蒸汽与硅表面反应,形成含有杂质的薄氧化层,杂质由氧化层直接向硅内扩散。 其硅表面浓度基本由扩散温度下杂质在硅中的固溶度决定,均匀性较好。 c.涂源法扩散是把溶于溶剂的杂质源直接涂在待扩散的硅片表面,在高温下由遁形 其他保护进行扩散。其特点是杂质源一般是杂质的氧化物或者杂质的氧化物与惰性 氧化物的混合物,当溶剂挥发后在硅表面形成一层杂质源。这种方法的表面浓度难 以控制,且不均匀。可以通过旋转涂源工艺或化学气象淀积法改善 (2) 液态源扩散液态源扩散是使用携带气体通过液态源,把杂质源蒸汽带入扩散炉管。其特点是载 气除了通过携带杂质气体进入扩散炉内之外,还有一部分直接进入炉管,起到稀释 和控制浓度作用。为了保证稳定性和重复性,源温一般控制在零摄氏度。其优点是 系统简单,操作方便,成本低,效率高,重复性和均匀性好。 (3) 气态源扩散气态源扩散是直接将杂质气体通入炉管进行掺杂,除了气态杂质外,有时还需通入 稀释气体或者杂质源进行化学反应所需要的气体。其特点是气态杂质源多为杂质的 氢化物或卤化物,毒性很大,且易燃易爆。气态杂质源一般先在硅表面进行化学反 应生成掺杂氧化层,杂质再由氧化层向硅中扩散。 3、杂质原子的扩散方式有哪几种?它们各自发生的条件是什么?从 原子扩散的角度举例说明氧化增强扩散和氧化阻滞扩散的机理。 (第 二章) 3、杂质原子的扩散方式有哪几种?它们各自发生的条件是什么?从 原子扩散的角度举例说明氧化增强扩散和氧化阻滞扩散的机理。 (第 二章) 交换式:两相邻原子由于有足够高的能量,互相交换位置。 空位式:由于有晶格空位,相邻原子能移动过来。 填隙式:在空隙中的原子挤开晶格原子后占据其位,被挤出的原子再去挤出其他原子。 在空隙中的原子在晶体的原子间隙中快速移动一段距离后,最终或占据空位,或挤出晶 格上原子占据其位。 以上几种形式主要分成两大类:替位式扩散;填隙式扩散。 替位式扩散替位式扩散 主要包括交换式(所需能量高)和空位式(所需能量低,更容易发生) 如果替位杂质的近邻没有空位则替位杂质要运动到近邻晶格位置上,就必须通过互相换 位才能实现。这种换位会引起周围晶格发生很大的畸变,需要相当大的能量,因此只有当替 位杂质的近邻晶格上出现空位,替位式扩散才比较容易发生。 填隙型扩散填隙型扩散 挤出机制:杂质在运动过程中 “踢出”晶格位置上的硅原子进入晶格位置,成为替位杂 质,被“踢出”硅原子变为间隙原子; Frank-Turnbull 机制:也可能被 “踢出”的杂质以间隙方式进行扩散运动。当它遇到空 位时可被俘获,成为替位杂质。 氧化增强扩散(OED)机理氧化增强扩散(OED)机理 硅氧化时,在 Si-SiO2 界面附近产生了大量的填隙 Si 原子,这些过剩的填隙 Si 原子在向硅内扩散的同时,不断与空位复合,使这些过剩的填隙 Si 原子的浓度 随深度而降低。在表面附近,过剩的填隙 Si 原子可以和替位 B 相互作用,从而 使原来处于替位的 B 变为填隙 B。当填隙 B 的近邻晶格没有空位时,填隙 B 就以 填隙方式运动;如果填隙 B 的近邻晶格出现空位时,填隙 B 又可以进入空位变为 替位 B。这样,杂质 B 就以替位-填隙交替的方式运动,其扩散速度比单纯的替 位式扩散要快。而在氮化硅保护下的硅不发生氧化,这个区域中的杂质扩散只能 通过空位机制进行扩散,所以氧化区正下方 B 的扩散结深大于氮化硅保护区正 下方的扩散结深。磷在氧化气氛中的扩散也被增强,其机制与硼相同。 氧化阻滞扩散机理氧化阻滞扩散机理 用锑代替硼的扩散实验表明, 氧化区正下方锑的扩散结深小于氮化硅保护区下方 的扩散结深,说明在氧化过程中锑的扩散被阻滞。这是因为控制锑扩散的主要机 制是空位。在氧化过程中,所产生的过剩间隙硅原子在向硅内扩散的同时,不断 地与空位复合,使空位浓度减小,从而降低了锑的扩散速度。 4、写出菲克第一定律和第二定律的表达式,并解释其含义。4、写出菲克第一定律和第二定律的表达式,并解释其含义。 费克第一定律费克第一定律 C杂质浓度 D扩散系数(单位为 cm2/s) J材料净流量(单位时间内流过单位面积的原子个数) 解释解释:如果在一个有限的基体中杂质浓度 C(x, t)存在梯度分布,则杂质 将会产生扩散运动,杂质的扩散流密度 J 正比于杂质浓度梯度C/x,比 例系数 D 定义为杂质在基体中的扩散系数。 1、杂质的扩散方向是使杂质浓度梯度变小。如果扩散时间足够长,则杂质分布 逐渐变得均匀。 2、当浓度梯度变小时,扩散减缓。 3、D 依赖于扩散温度、杂质的类型以及杂质浓度等。 菲克第二定律菲克第二定律 如果假设扩散系数 D 为常数,这种假设在低杂质浓度情况下是正确的,则得 解释解释:菲克第二定律即为一维扩散方程 沿扩散方向,从 x 到 x+x,面积为s 的一个小体积元内的杂质数量随时间的 变化情况。设在小体积元v=xs 内的杂质分布是均匀的。体积元内的杂质 浓 度 为 C(x,t) , 经 过 t 时 间 , 该 体 积 元 内 杂 质 变 化 量 为 ,杂质在 x 处的扩散流密度分别为 J(x,t)则 在 t时 间 内 通 过x处 和x+ x处 的 杂 质 流 量 差 为 ,假设体积元内的杂质不产生也不消失, 可得代入第一定律方程则得到第二方程。即杂质在材料 中沿某一方向浓度随时间变化率是由于扩散所引起的。 5、以 P5、以 P2 2O O5 5为例,多晶硅中杂质扩散的方式及分布情况。为例,多晶硅中杂质扩散的方式及分布情况。 由于 P2O5 的晶粒较大,因此主要形成 B 类分 6.分别写出恒定表面源扩散和有限表面源扩散的边界条件、初始条件、 扩散杂质的分布函数,简述这两种扩散的特点 6.分别写出恒定表面源扩散和有限表面源扩散的边界条件、初始条件、 扩散杂质的分布函数,简述这两种扩散的特点 主要特点:主要特点:(1) 、杂质分布形式:在表面浓度 Cs 一定的情况下,扩散时间越长,杂质 扩散的就越深,扩到硅内的杂质数量也就越多。 (2)、结深: DtA C C erfcDtx s B j 1 2 (3)、杂质浓度梯度: Dt x s tx e Dt C x txC 4 , 2 | ),( 有限表面源:有限表面源: 主要特点主要特点(1) 、杂质分布形式:与恒定表面源扩散不同,有限表面源扩散的表面浓度 Cs 随 时间而降低: Dt Q tCtCs ), 0()( ,扩散温度相同时,扩散时间越长,杂 质扩散的越深,表面浓度越低。扩散时间相同时,扩散温度越高,杂质扩散的越深,表面浓 度下降越多。 (2)、结深: ln4 DtC Q Dtx B T j ,对于有限源扩散来说,扩散时间较短 时,结深 xj 将随(Dt)1/2 的增加而增加。在杂质分布形式相同的情况下,CB 越大,结深越 浅。 (3)杂质浓度梯度:任意位置的杂质浓度 ),( 2 | ),( ),( txC Dt x x txC tx PN 结处的杂质浓度: Bs Bs j s x CC CC x C x txC j / )/ln(2 | ),( 杂质浓度梯度将随扩散结深的增加而减小。 7 什么是两步扩散工艺,其两步扩散的目的分别是什么?什么是两步扩散工艺,其两步扩散的目的分别是什么? 两步扩散两步扩散:采用两种扩散结合的方式 第一步称为预扩散或者预淀积:在较低温度下,采用恒定表面源扩散方 式。在硅片表面扩散一层数量一定,按余误差函数形式分布的杂质。由 于温度较低,且时间较短,杂质扩散的很浅,可认为杂质是均匀分布在 一薄层内,目的是为了控制扩散杂质的数量。 第二步称为主扩散或者再分布:将由预扩散引入的杂质作为扩散源,在 较高温度下进行扩散。主扩散的目的是为了控制表面浓度和扩散深度。 两步扩散后的杂质最终分布形式:主扩散起决定作用,杂质基本 按高斯函数分布。 8 假设进行一次受固溶度限制的预淀积扩散, 从掺杂玻璃源引入的杂 质总剂量为 Qcm-2。 (1)如果这次预淀积进行了总共 t 分钟,若预淀 积温度不变,引入 3Qcm-2 的杂质需要多长时间?(2)预淀积后再 进行推进扩散, 要求推进的杂质足够深, 使得最后表面杂质浓度等于 其固溶度 Cs 的 1%。若已知预淀积过程中的(Dt)predop,推导出推进 扩散过程中(Dt)drive-in 的表达式。 8 假设进行一次受固溶度限制的预淀积扩散, 从掺杂玻璃源引入的杂 质总剂量为 Qcm-2。 (1)如果这次预淀积进行了总共 t 分钟,若预淀 积温度不变,引入 3Qcm-2 的杂质需要多长时间?(2)预淀积后再 进行推进扩散, 要求推进的杂质足够深, 使得最后表面杂质浓度等于 其固溶度 Cs 的 1%。若已知预淀积过程中的(Dt)predop,推导出推进 扩散过程中(Dt)drive-in 的表达式。 (1),当 Q 变成 3Q 时,t 为 9t (2)由 可知, (Dt)predop2/QCs Cs 与(Dt)drive-in 的关系可表示为 最后表面杂质浓度等于其固溶度 Cs 的 1%, 由上述两式可得: (Dt)drive-in=40000(Dt)predop/ 9、简述几种常用的氧化方法及其特点。 (第二章 PPT,66-71 页)9、简述几种常用的氧化方法及其特点。 (第二章 PPT,66-71 页) 热氧化法热氧化法:Si 与氧或水汽等氧化剂在高温下发生化学反应生成 SiO2 。 热氧化法制备 SiO2 的特点:具有很高的重复性和化学稳定性,其物理性质和化学性质不太 受湿度和中等温度热处理的影响;降低 Si 表面的悬挂键,使表面态密度减小;很好地控制 界面陷阱和固定电荷。这些特点对 MOS 器件和其他器件都是至关重要的。 (1)干氧氧化)干氧氧化 在高温下,氧气与硅反应生成 SiO2。 氧化温度为 900-1200,为了防止外部气体的玷污, 炉内气体压力应 比一个大气压稍高些,可通过气体流速来控制。 优点:结构致密、干燥、均匀性和重复性好,掩蔽能力强,与光刻胶黏附 好,目前制备高 质量的 SiO2 薄膜基本上都是采用这种方法。 缺点:干氧氧化法的生长速率慢,所以经常同 湿氧氧化方法相结合生长 SiO2 。 (2)水汽氧化)水汽氧化 在高温下,硅与高纯水产生的蒸气反应生成 SiO2。产生的 H2 分子沿 Si-SiO2 界面或者以扩 散方式通过 SiO2 层“逃离” 。因为 水比氧气在 SiO2 中有更高的扩散系数和大得多的溶解 度,所以水汽氧化的生 长速率一般比较高。 (3)湿氧氧化)湿氧氧化 湿氧氧化的氧化剂是通过高纯水的氧气,高纯水一般被加热到 95左 右。通过高纯水的氧 气携带一定水蒸气,所以湿氧氧化的氧化剂既含有氧, 又含有水汽。 因此,SiO2 的生长 速率介于干氧和水汽氧化之间,与氧气流 量、水汽的含量有着密切关系。 如果水汽含量很少, SiO2 的生长速率和质量就越接近于干氧氧化的情况, 反之,就越接 近水汽氧化情况。 水汽含量与水温和氧气流量有关。 氧气流量越大, 水温越高, 则水汽含 量 就越大。 (4)快速热氧化工艺)快速热氧化工艺(RTO) 制备深亚微米器件的栅极氧化层,非常薄ks,在这种情况下线性氧化速率常 数的大小主要由化学反应常数 ks 决定, 即由硅表面处的原子经化学反应转变为 SiO2 的速率 决定。表面化学反应速率是与硅表面的原子密度,也就是与表面的价 键密度有关。(111)面 上的硅原子密度比(100)面上大。因此,(111)面上的线性氧化速率常数应比(100)面上大。 4)杂质影响)杂质影响 在干分子氧中加入少量 (1%3%) 卤素能够显著改善 SiO2 特性, 最普遍 使用的卤元素是氯。 加速反应:Si-O 键能为 4.25eV,Si-Cl 键能为 0.5eV。氯气与 Si 反应生成的 SiCl4 可以 与氧 气反应生成 SiO2,这里氯气起到了催化剂的作用。Cl-能够中和积累在表面的电荷。氯 气能够与大多数重金属原子反应生成挥发性的金属氯化物,起到清洁作用。HCl 一直是最常 用的氯源,此外三氯乙烯(TCE)和三氯乙烷(TCA)因腐蚀性较小也有时被使用。 15、简述在热氧化过程中杂质再分布的四种可能情况。15、简述在热氧化过程中杂质再分布的四种可能情况。 掺有杂质的硅在热氧化过程中,在 Si-SiO2 界面上的平衡 杂质浓度之比定义为分凝系数。 如果假设硅中的杂质分布是均匀的,而且氧化气 氛中又不含有任何杂质,则再分布有四种可能。 ml, 且在 SiO2 中是慢扩散的杂质, 也就是说在分凝过程中杂质通过 SiO2 表面损失的很 少,硼就是属于这类。再分布之后靠近界面处的 SiO2 中的杂质 浓度比硅中高,硅表面附近 的浓度下降。 m1,且在 SiO2 中是快扩散的杂质。因为大量的杂质通过 SiO2 表面跑到 气体中去,杂 质损失非常厉害, 使 SiO2 中的杂质浓度比较低, 但又要保证界 面两边的杂质浓度比小于 1, 使硅表面的杂质浓度几乎降到零,在 H2 气氛中 的硼就属于这种情况。 m1,且在 SiO2 中慢扩散的杂质。再分布之后硅表面附近的杂质浓度升高, 磷就属于 这种杂质。 ml,且在 SiO2 中快扩散的杂质。在这种情况下,虽然分凝系数大于 1,但 因大量杂质 通过 SiO2 表面进入气体中而损失,硅中杂质只能不断地进入 SiO2 中, 才能保持界面两边 杂质浓度比等于分凝系数,最终使硅表面附近的杂质浓度 比体内还要低,镓就是属于这种 类型的杂质。 对于 m1,而且也没有杂质从 SiO2 表面逸散的情况,热氧化过程也同样使硅 表面杂质浓 度降低。这是因为一个体积的硅经过热氧化之后转变为两个多体 积的 SiO2,由此,要使界 面两边具有相等的杂质浓度(m1),那么杂质必定要 从高浓度硅中向低浓度 SiO2 中扩散, 即硅中要消耗一定数量的杂质,以补偿 增加的 SiO2 体积所需要的杂质。 16. 一片硅片由 0.3um 厚的 SiO16. 一片硅片由 0.3um 厚的 SiO2 2薄膜覆盖。薄膜覆盖。 (1)在 1200下,采用 H2O 氧化,使厚度增加 0.5um 需要多少时间?。 (2)在 1200下,采用干氧氧化,增加同样的厚度需要多少时间? 所需数据见下表,玻尔兹曼常数 k=1.3810-23。 氧化工艺BB/A 干氧C1=7.72*103um2h-1 E1=1.23eV C2=6.23*106um2h-1 E2=2.0eV 湿氧C1=2.14*102um2h-1 E1=0.71eV C2=8.95*107um2h-1 E2=2.05eV H2OC1=3.86*102um2h-1 E1=0.78eV C2=1.63*108um2h-1 E2=2.05eV (1)SiO2生长厚度与时间的普遍关系式 2 00 ()xAxB t 其中 11 exp(/)BCEkT 22 /exp(/)B ACEkT 2 ()/ ii xAxB为初始时间,其中 xi为初始氧化层厚度,x0为总氧化层厚度。 0 2 11 2/ 4 At x AB 推出 2 2 0 / 42/1-1 -tABxA 22 2319 0.78 3.86 10exp0.8259/ (1200273) 1.38 10/(1.602 10) Bmh 8 2319 2.05 /1.63 10exp15.6933/ (1200273) 1.38 10/(1.602 10) B Am h 0.8259 0.0526 15.6933 Am 22 ()(0.30.0526 0.3) 0.1281 0.8259 ii xAx h B 22 (0.0526 /(4*0.8259)*(2*0.8/0.0526 1)1)0.12810.6978th 取近似时,当氧化时间很长,即t时, 22 0 (0.30.5) 0.12810.6468 0.8259 x th B (2)同理可知 22 2319 1.23 7.72 10exp0.0476/ (1200273) 1.38 10/(1.602 10) Bmh 6 2319 2.0 /6.23 10exp0.8895/ (1200273) 1.38 10/(1.602 10) B Am h 0.0476 0.0535m 0.8895 A 22 0.0535()(0.30.3) 2.2279 0.0476 ii xAx h B 22 (0.0535 /(4*0.0476)*(2*0.8/0.0535 1)1)2.223312.1212th 取近似时, 22 0 (0.30.5) 2.227911.2175 0.0476 x th B 10、SiO2 界面电荷有哪几种?简述其来源及处理办法。界面电荷有哪几种?简述其来源及处理办法。 (1)可动离子电荷可动离子电荷 Qm 位置:氧化层中的任何地方。Qm最初位于栅(金属/多晶硅)-SiO2 界面, 但是在正向偏压 或者高温下,它们会向 Si-SiO2 界面移动。来源:主要来源于 Na+等网络改变者。影响:会 对 MOS 期间的阈值电压 VT 和稳定性造成影响。解决办法:为了降低 Na+的玷污,可以在工 艺过程中采取预防措施包括 使用含氯的氧化工艺; 用氯周期性地清洗管道、 炉管和相 关的容器; 使用超纯净的化学物质; 保证气体及气体传输过程的清洁。另外保证栅材 料不受玷污也是很重要的。 (2)氧化层陷阱电荷氧化层陷阱电荷 Qo t 位置:位于 SiO2 中和 Si-SiO2 界面附近,这种陷阱俘获电子或空穴后分别荷负电或正电. 来源:在氧化层中有些缺陷能产生陷阱,这些缺陷有:悬挂键;界面陷阱;硅-硅键的伸 展;断键的氧原子(氧的悬挂键);弱的硅-硅键(它们很容易破裂,面表现电学特性)。 扭曲的硅-氧键;Si-H 和 Si-OH 键。产生陷阱电荷的方式主要有电离辐射和热电子注入等 影响:氧化层陷阱的存在会严重影响器件的可靠性。 解决办法:减少电离辐射陷阱电荷的主要方法有三种: 选择适当的氧化工艺条件以改善 SiO2 结构。为抗辐照,氧化最佳工艺 条件,常用 1000干氧氧化。 在惰性气体中进行 低温退火(150-400)可以减少电离辐射陷阱。 采用对辐照不灵敏的钝化层, 例如 A12O3, Si3N4 等。 (3)氧化层固定电荷氧化层固定电荷 Qf 位置:Si-SiO2 界面附近 2-3nm 处,是一层很薄的正电荷层,电荷密度约为 1091011cm-2, 这一值不随常规的器件操作产生变化,通常有:Qf:Qf:Qf=3:2:1 来源:通常是由 Si-SiO2 之间过渡区的结构改变引起的。该区中存在有过剩 的硅离子,在氧 化过程中与晶格脱开但还未完全与氧反应。影响:使 C-V 曲线横向移动,改变晶体 管进入 导通状态的阈值电压。解决办法:快速退火能有效地减小氧化层固定电荷密度。 (4)界面陷阱电荷界面陷阱电荷 Qit 位置:Si-SiO2 界面处,能量处于硅禁带中、可以与价带或导带能够方便交换电荷的那些陷 阱能级或电荷状态。 来源:界面处存在的不完整化合价及不饱和键,使得电子和空穴可以很容易地被俘获。 影响:因为 Qit 的能量穿越整个禁带,取决于当地的价键配置情况,所以影响较为复杂。它 可以使阈值电压产生漂移;使 MOS 电容的 C-V 曲线发生畸变;另外面态还可以成为有效的 复合中心,导致漏电流的增加;也会减小 MOS 器件沟道的载流子迁移率,使沟道电导率减 小,降低器件性能。 处理办法:处理办法:界面态密度与衬底晶向、氧化层生长条件和退火条件密切有关。在相同的工艺 条件下、(111)晶向的硅衬底产生的界面态密度最高,(100)晶向的最低。通过采用特殊的退 火工艺可以有效减少界面态密度。 11.下图为一个典型11.下图为一个典型 的离子注入系统。的离子注入系统。 (1)给出)给出 16 数字标识部数字标识部 分的名称,简述其作用。分的名称,简述其作用。 (2)阐述部件)阐述部件 2 的工作原的工作原 理。理。 (1)1-6 分别是:离子源、 分析磁块和分析光阑(质量 分析器) 、加速器、中性束 闸和中性束阱、 X&Y 扫描板、 法拉第杯 (2)部件 2 是分析磁块,其作用是: 作用:将所需离子分选出来 原理:带电离子在磁场中受洛伦磁力作用,运动轨迹发生弯曲 由离子源引出的离子流含有各种成分, 其中大多数是电离的。 离子束进入一个低压腔体内, 该腔体内的磁场方向垂直于离子束的速度方向, 利用磁场对荷质比不同的离子产生的偏转作 用大小不同,最后在特定位置采用一个狭缝,可以将所需的离子分离出来。 12.离子在靶内运动时,损失能量可分核阻滞和电子阻滞,解释什么 是核阻滞、 电子阻滞?两种阻滞本领与注入离子能量具体有何关系? 12.离子在靶内运动时,损失能量可分核阻滞和电子阻滞,解释什么 是核阻滞、 电子阻滞?两种阻滞本领与注入离子能量具体有何关系? 解答: 对于核阻滞本领核阻滞本领:在离子能量较低时,离子的能量不足破坏化学键, 发生的是近弹性碰撞,可以用库伦散射模型(入射离子和靶原子碰撞 时,电场相互作用,将动能转化为势能,该势能能被离子和靶原子按 照各自质量大小所瓜分, 离子改变方向继续前进, 晶格原子产生反冲) 来描述这一碰撞过程,能量损失用 Sn 表示,Sn 随着离子能量的增大 而增大;在离子能量较高时,碰撞事件变得非常之短,使得能量损失 变小,因此 Sn 在某个能量时有最大值。 对于电子阻滞本领电子阻滞本领:能量损失的其他重要组成部分来自电子的作用, 分为非局部电子阻滞 (不改变入射离子运动方向) 和局部电子阻滞 (电 荷/动量交换导致入射离子运动方向的改变) , 这两种组织形式都直接 取决于离子的速度,因此,由于电子阻滞儿在每个单位长度上损失的 能量用 Se 表示。 12.离子在靶内运动时,损失能量可分核阻滞和电子阻滞,解释什么 是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具有何关系? 12.离子在靶内运动时,损失能量可分核阻滞和电子阻滞,解释什么 是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具有何关系? 核阻滞即由于注入离子与靶内原子核的碰撞而导致的阻滞本领。 电子阻滞就是由于注入离子与靶内自由电子以及束缚电子之间的碰 撞而导致的阻滞本领。 (1)核阻滞本领能量损失与离子能量关系 在离子能量较低时在离子能量较低时,离子的能量不足破坏化学键,发生的是近弹性 碰撞, 可以用库仑散射模型来描述这一碰撞过程, 能量损失定义为Sn, 它随着离子能量的增大而增大。传递的动量由下式给出: tFpd 在离子能量较高时在离子能量较高时,碰撞时间变得非常之短,使得能量损失变小, 因此SnSn在某个能量时有最大值,由下式可以近似得出Sn的最大值: (2)由于电子阻滞而在每个单位长度上损失的能量用符号Se表示为 其中,ke为一个与粒子和靶物质有关的比例常数。 在假定衬底是非晶体的最简单情况下,k基本与被注入的离子无关, 可以近似认为k0.210 15eV1/2cm2。 13.采用无定形掩膜的情况下进行注入,若掩蔽膜/衬底界面的杂质浓 度减少至峰值浓度的 1/10000,掩蔽膜的厚度应为多少?用注入杂质 分布的射程和标准偏差写出表达式。 13.采用无定形掩膜的情况下进行注入,若掩蔽膜/衬底界面的杂质浓 度减少至峰值浓度的 1/10000,掩蔽膜的厚度应为多少?用注入杂质 分布的射程和标准偏差写出表达式。 解:一级近似下,无定形靶内的纵向浓度分布可用高斯函数表示: 其中:N0为峰值浓度,Rp为注入杂质的分布射程,Rp为标准偏差; 由于离子注入过程的统计特性,离子也有穿透掩蔽膜边缘的横向散射,因此 分布应考虑为二维的,既有横向也有纵向的标准偏差,故要求掩蔽膜厚度时应该 考虑边界层的影响,其浓度随深度变化图像如下图所示: 认为在xm处时,界面的杂质浓度减少至峰值浓度的1/10000,带入数据得: 2 4 2 10exp 2 mp p xR R 即: 8 ln 104.292 mpppp xRRRR 14、As注入到轻掺杂的P型Si衬底内, 能量75eV, 剂量为11014cm-2。 硅片相对于离子束做7倾斜,使其貌似非晶。假设对注入区进行快 速退火, 结果得到了完全的电激活, 其峰值电子浓度为多少?所需参 数可参考下图。 14、As注入到轻掺杂的P型Si衬底内, 能量75eV, 剂量为11014cm-2。 硅片相对于离子束做7倾斜,使其貌似非晶。假设对注入区进行快 速退火, 结果得到了完全的电激活, 其峰值电子浓度为多少?所需参 数可参考下图。 解:采用7的倾斜角偏离轴注入,可以减小沟道效应。靶内某 次的散射结果可能会使入射离子转向某一晶轴方向, 但是由于这种事 件发生的概率较小, 因此对注入离子峰附近的分布并不会产生实质性 的影响。故采用峰值浓度公式如下: 其中:Rp为投影射程的标准偏差,为剂量。 因为As的能量为75eV,由标准偏差图可估计出:Rp=0.02um 又 =11014cm-2,带入上式可得 N0=1.9951019(cm-3) 解:一级近似下,无定形靶内的纵向浓度分布可用高斯函数表示: 其中,Rp为投影射程,Rp为投影射程的标准偏差,为剂量。以上 为浓度与深度的函数变化关系。 则对于As来说,当注入能量为75eV时,其注入深度为0.06um,标 准偏差是0.021um。将剂量为110 14cm-2代入上式中N 0表达式中得 N0=1.8998*10 15cm-2 由N(x)表达式可得, 其峰值电子浓度出现在x=Rp处, 将其代入N(x) 式得 Nmax=N0=1.8998*10 15cm-2 15.什么是离子注入的横向效应?同等能量注入时, As和B哪种横向效15.什么是离子注入的横向效应?同等能量注入时, As和B哪种横向效 应更大?为什么?应更大?为什么? 答:任何一个注入离子,在靶内所受到的碰撞是一个随机过程,因而 它们在靶内分布是很分散的, 那么离子就有穿透掩蔽膜边缘的横向散 射,这就是离子注入的横向效应。 同等能量注入时,B的横向效应更大,因为B离子更轻,在相同 能量时,注入深度更大,横向扩散也大,所以其横向效应更大。 16.什么是离子分布的偏斜度和峭度,和标准高斯分布有什么区别?16.什么是离子分布的偏斜度和峭度,和标准高斯分布有什么区别? 答:非对称性常用偏斜度(skewness)表示 为负值表明杂质分布在表面一侧的浓度增加,即xRp区域浓度增 加。畸变用峭度(kurtosis)表示 峭度越大,高斯曲线的顶部越平,标准高斯曲线的峭度为3。 LSS的理论是呈标准的高斯分布,不同的杂质会不同程度地偏离对称 的高斯分布。和的值可以用蒙特卡洛模拟得到,或更直接地测量 实际分布并对结果进行拟合,其和标准的高斯分布有一定的误差。 17.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的17.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的 温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原 因。 温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原 因。 答:虽然热退火温度比热扩散的温度要低得多。在退火温度下,对于 完美晶体中的杂质来说,扩散系数是很小的,甚至可以忽略。但是, 对于注入区的杂质,即使在比较低的温度下,杂质扩散也是非常显著 的。这是因为离子注入所造成的晶格损伤:硅内的空位数比完美晶体 中多得多、 晶体内存在大量的间隙原子以及其它各种缺陷使得扩散系 数增大,扩散效应增强,而导致高斯展宽和拖尾现象。 18.什么是离子注入中常发生的沟道效应(Channeling)和临界角? 怎样避免沟道效应? .什么是离子注入中常发生的沟道效应(Channeling)和临界角? 怎样避免沟道效应? (1)沟道效应沟道效应:当离子速度方向平行于主晶轴时,将很少受到核碰 撞,离子将沿沟道运动,注入深度很深。 临界角 其中,E为入射能量,单位为keV,d为沿离子运动方向上的原子间距, 单位为。如果离子的速度矢量与主要晶轴方向的夹角要大得多, 则很少发生沟道效应。 (2)解决办法:解决办法: 偏离轴注入,采用7的倾斜角,但并不能完全消除沟道效应。 注入前破坏晶格结构,使用Si、F或Ar离子注入完成硅的预非晶化。 使用薄的屏蔽氧化层,使离子进入晶体前的速度方向无序化,但会 将部分氧注入晶体。 19.什么是固相外延(SPE)及固相外延中存在的问题?(第三章PPT 47-48页)19.什么是固相外延(SPE)及固相外延中存在的问题?(第三章PPT 47-48页) 固相外延是一种半导体薄膜材料制备方法,它是指半导体单晶上的非晶层在 低于该材料的熔点或共晶点温度下外延再结晶的过程。 没有外延的再结晶过程就 不属于固相外延。如热退火的过程是一个固相外延的过程(SPE),以未损伤的 下面衬底作为外延模板,杂质与移位的衬底材料一同进入生长的晶格中。过程如 下图: 固相外延存在问题射程末端缺陷EOR。高剂量注入促使硅非晶化,而稳 定的位错环是高剂量注入的一个突出特点,非晶区以固相外延方式生长后,位错 环的最大浓度在非晶和晶体硅的界面。这些位于最初的非晶/单晶(a/c)界面的 缺陷称为射程末端(EOR,End-of-Range)缺陷。形成射程末端缺陷的原因在于a/c 界面的一侧有大量的非晶化阈值损伤。如图所示 若位错环位于PNPN结耗尽区附近,会产生大的漏电流。位错环与金 属杂质结合时更严重。选择的退火过程应当能够产生足够的杂质扩散,使位错环 处于高掺杂区,同时又被阻挡在器件工作时的耗尽区之外。 20.简述硼和磷的退火特性。(第三章PPT 49-52页) 硼的退火特性 20.简述硼和磷的退火特性。(第三章PPT 49-52页) 硼的退火特性 电激活比例:自由载流子数p和注入剂量Ns的比。 a.对于低剂量的情况,随退火温度上升,电激活比例增大。 b.对于高剂量情况,可以把退火温度分为三个区域: 在区域I中,随退火温度上升,点缺陷的移动能力增强,因此间隙硼和硅原 子与空位的复合几率增加, 使点缺陷消失, 替位硼的浓度上升, 电激活比例增加, 自由载流子浓度增大。 当退火温度在500-600的范围内,点缺陷通过重新组合或结团,降低其能 量。因为硼原子非常小,和缺陷团有很强的作用,很容易迁移或被结合到缺陷团 中,处于非激活位置,因而出现随温度的升高而 替位硼的浓度下降的现象,也就是自由载流子浓度随温度上升而下降的现象(逆 退火特性)。 在区域中,硼的替位浓度以接近于5eV的激活能随温度上升而增加,这个 激活能与升温时Si自身空位的产生和移动的能量一致。 产生的空位向间隙硼处运 动, 因而间隙硼就可以进入空位而处于替位位置,硼的电激活比例也随温度上升 而增加。 实际退火条件,要根据注入时靶温、注入剂量及对材料性能的要求来选择。 注入剂量低,不发生逆退火现象,退火温度不需要太高。10(12)/cm2,800 度,几分钟。室温注入与靶温较高时注入时,产生非晶区的临界剂量不同,退火 要求也不同。 磷退火特性磷退火特性 图中虚线所表示的是损伤区还没有变为非晶层时的退火性质, 实线则表示非 晶层的退火性质。 对于110(15)/cm2和510(15)/cm2时所形成的非晶层,退火温度在 600左右,低于剂量为10(14)左右没有形成非晶层时的退火温度,这是因为 两种情况的退火机理不同。 非晶层的退火效应是与固相外延再生长过程相联系的,在再生长过程中,V 族原子实际上与硅原子是难以区分, 被注入的V族原子P在再结晶过程中与硅原子 一样,同时被结合到晶格位置上。 21.简述 RTP 设备的工作原理(第三章第 62 页) ,相对于传统高温炉 管它有什么优势(第三章 67 页)? 21.简述 RTP 设备的工作原理(第三章第 62 页) ,相对于传统高温炉 管它有什么优势(第三章 67 页)? 答: (1)RTP 设备的工作原理:答: (1)RTP 设备的工作原理:RTP 工艺是一类单片热处理工艺,其目的是通过 缩短热处理时间和温度或只缩短热处理时间来获得最小的工艺热预算(Thermal Budget) 。 RTP 工艺的发展,是为了适应等比例缩小器件结构对杂质再分布的严格要求; 最早的 RTP 工艺主要用于注入后的退火。目前,RTP 工艺的应用范围已扩展到氧 化、化学气相淀积和外延生长等领域。 根据加热类型可以分为以下三类:a:绝热型宽束相干光快速脉冲; b:热流型高强度点光源整片扫描;c:等温型宽束非相干光辐射 (2)RTP 设备与传统高温炉管的优势(2)RTP 设备与传统高温炉管的优势(粗体粗体的为优势,未标红的只是区别) : a.a.传统炉管的致命缺点是热预算大, 无法适应深亚微米工艺的需要; 而 RTP 设 备能大幅降低热预算。 b.b.升降温速度:RTP 设备的升、降温速度为 10-200 /秒,而传统炉管的升、 降温速度为 5-50 /分钟。 c.c.传统炉管是热壁工艺,容易淀积杂质;RTP 设备则是冷壁工艺,减少了硅 片沾污。 d.加热元件:RTP 采用加热灯管,传统炉管采用电阻丝硅片 e.温度控制:传统炉管利用热对流及热传导原理,使硅片与整个炉管周围环境 达到热平衡,温度控制精确;而 RTP 设备通过热辐射选择性加热硅片,较难控制 硅片的实际温度及其均匀性。 f.生产方式:RTP 设备为单片工艺,而传统炉管为批处理工艺。 22.简述 RTP 在集成电路制造中的常见应用(第三章 76-79 页)22.简述 RTP 在集成电路制造中的常见应用(第三章 76-79 页) 答: (1)杂质的快速热激活答: (1)杂质的快速热激活 RTP 工艺最具吸引力的的热点之一是晶圆片不用达到热平衡状态,意味着 电活性的有效掺杂实际上可以超过固溶度限制。例如,对砷进行数毫秒的退火, 它的激活浓度可达到 31021 左右,大约是其固溶度的 10 倍。因为,在短时间 的退火过程中, 砷原子没有足够的时间来形成聚团并凝聚成无活性的缺陷。 注意: 若激活不太充分,过剩的砷原子会形成深能级,若这些深能级靠近 PN 结会成为 有效的产生/复合中心,导致 PN 结漏电。 (瞬时增强扩散效应: 快速热退火过程中, 注入离子的扩散率会极大地增强, 人们认为这种增强效应起源于残留的注入损伤, 注入后的晶圆片内存在高浓度的 空位和自填隙原子。现在人们普遍认为,砷的瞬时效应比硼要小得多,这些瞬时 效应随某个特征时间常数减弱,这个时间常数与衬底中缺陷湮灭的速率有关) 。 (2)介质的快速热加工(2)介质的快速热加工 快速热氧化(RTO)可以在合适的高温下通过精确控制的气氛来实现短时间生 长薄氧层。 (干氧方法) a.RTO 生长的氧化层具有很好的击穿特性,电性能上坚固耐用。 b.由于不均匀温度分布产生的晶圆片内的热塑应力影响了 RTO 的均匀性。 c.若适当冷却反应腔壁,可以用作冷壁工艺,防止腔壁污染后续工艺。 (3)硅化物和接触的形成(3)硅化物和接触的形成 快速热处理也经常被用于形成金属硅化物接触, 其可以仔细控制硅化反应的 温度和环境气氛,以尽量减少杂污染,并促使硅化物的化学配比和物相达到最理 想的状态。 形成阻挡层金属也是 RTP 在 Si 技术中的一个应用,这些导电的阻挡层金属 可以阻止硅衬底和用于器件互联的 Al 基合金之间的互扩散。 另外 RTP 还可以在 GaAs 工艺中用于接触的形成,淀积一层金锗混合物并进 行热退火,可以在 N 型 GaAs 材料上形成低阻的欧姆接触。 23. 对 RTP 来说, 很难在高温下处理大直径晶圆片而不在晶圆片边缘 造成热塑应力引起的滑移。 分析滑移产生的原因。 如果温度上升速度 加快后, 滑移现象变得更为严重, 这说明晶圆片表面上的辐射分布是 23. 对 RTP 来说, 很难在高温下处理大直径晶圆片而不在晶圆片边缘 造成热塑应力引起的滑移。 分析滑移产生的原因。 如果温度上升速度 加快后, 滑移现象变得更为严重, 这说明晶圆片表面上的辐射分布是 怎样的?(第三章 ppt,62-70 页)怎样的?(第三章 ppt,62-70 页) 答:滑移产生的原因: RTP 工艺是一类单片热处理工艺,其目的是通过缩短热处理时间和温度或只 缩短热处理时间来获得最小的工艺热预算。 RTP 采用加热灯管作为热源, 通过热 辐射选择性加热硅片,较难控制硅片的实际温度及其均匀性。造成硅片受热不均 的原因主要有三个: (1)圆片边缘接收的热辐射比圆片中心少; (2)圆片边缘的 热损失比圆片中心大; (3)气流对圆片边缘的冷却效果比圆片中心好。这些因素 使得硅片边缘温度比中心低,其温度梯度通常在几十甚至上百度,在晶圆片边缘 造成很大的热塑应力,从而引起滑移等缺陷。 辐射分布: (个人见解,仅供参考) 如果温度上升速度加快, 热损失和气流冷却对硅片中心和边缘温度差异造成 的影响被相对减弱了,但滑移现象却变得更为严重,这说明晶圆片表面上的辐射 分布是很不均匀的,中心受到的辐射远多于边缘受到的辐射,因此加快温度上升 速度使得中心和边缘的温度梯度加大,从而导致滑移现象变得更为严重。 24.物理气相淀积最基本的两种方法是什么?简述这两种方法制备薄 膜的过程。 24.物理气相淀积最基本的两种方法是什么?简述这两种方法制备薄 膜的过程。 1)物理气相淀积最基本的两种方法是:蒸发 Evaporation、溅射 Sputtering 2)这两种方法制备薄膜的过程 蒸发蒸发:在真空条件下,加热蒸发源,使原子或分子从蒸发源表面逸出, 形成蒸气流并入射到衬底表面,凝结形成固态薄膜。 溅射溅射:基本原理如右图所示,真空腔中有一个平 行板等离子体反应器,非常类似于简单的反应离子刻 蚀系统。将靶材放置在具有最大离子电流的电极上, 高能离子将所要淀积的材料从靶材中轰击出来。靶与 晶圆片相距十分近(小于 10cm),出射原子大部分能 被晶圆所收集。 25.热蒸发法淀积薄膜的淀积速率与哪些因素有关?淀积速率的测量采 用什么办法?简述其工作原理。 25.热蒸发法淀积薄膜的淀积速率与哪些因素有关?淀积速率的测量采 用什么办法?简述其工作原理。 1)热蒸发法淀积薄膜的淀积速率的影响因素 当将坩埚和晶圆片放在同一个球表面上时,推导 可得淀积速率 e d 22 = 2 k4 r PMA R T 即蒸发材料、温度、腔体形状影响沉积速率 2)淀积速率的测量采用的办法 淀积速率通常用石英晶体速率指示仪测量。所用器件为一个谐振板,它 可以在谐振频率下振荡,工作时测量其振荡频率。 3)其工作原理 因为晶体顶部有材料蒸发淀积,所外加的质量将使得频率偏移,由测 得的频率移动可得出淀积速率。 26、 什么是溅射产额, 其影响因素有哪些?简述这些因素对溅射产额 产生的影响。 26、 什么是溅射产额, 其影响因素有哪些?简述这些因素对溅射产额 产生的影响。 溅射产额 影响因素影响因素:离子质量、离子能量、靶原子质量、靶的结晶性 离子质量离子质量:溅射产额S依赖于入射离子的原子量,原子量越大,则溅射率越高。 离子能量:离子能量:只有当入射离子的能量超过一定能量(溅射阈值)时,才能发生溅射, 每种物质的溅射阈值与被溅射物质的升华热有一定的比例关系。 随着入射离子能 量的增加,溅射率先是增加,其后是一个平缓区,当离子能量继续增加时,溅射 率反而下降,此时发生了离子注入现象。 靶原子质量靶原子质量:随着靶原子序数的增加,S值是周期性变化的,材料的电子结构中, d壳层电子越多,该材料S值就越大 靶的结晶性靶的结晶性:一般说来,单金属的溅射产额高于它的合金;在绝缘材料中,非晶 体溅射

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论