




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平定县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A)150种 ( B ) 180 种 (C) 240 种 (D) 540 种2 已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )A B C D3 下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤4 设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)5 设等差数列an的前n项和为Sn,已知S4=2,S5=0,则S6=( )A0B1C2D36 某几何体的三视图如图所示,则该几何体为( )A四棱柱 B四棱锥 C三棱台 D三棱柱 7 已知向量,若为实数,则( )A B C1 D28 设曲线在点处的切线的斜率为,则函数的部分图象可以为( )A B C. D9 已知函数f(x)=是R上的增函数,则a的取值范围是( )A3a0B3a2Ca2Da010若复数的实部与虚部相等,则实数等于( )(A) ( B ) (C) (D) 11已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D612已知某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),则以下结论正确的是( )A第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定二、填空题13=14抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为15甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 16已知满足,则的取值范围为_.17已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个18设f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是三、解答题19(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,已知ksin Bsin Asin C(k为正常数),a4c.(1)当k时,求cos B;(2)若ABC面积为,B60,求k的值20(本小题满分12分)已知函数,数列满足:,().(1)求数列的通项公式;(2)设数列的前项和为,求数列的前项和.【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21已知p:“直线x+ym=0与圆(x1)2+y2=1相交”;q:“方程x2x+m4=0的两根异号”若pq为真,p为真,求实数m的取值范围22在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y1)2=4和圆C2:(x4)2+(y5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标23已知命题p:“存在实数a,使直线x+ay2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且q”是真命题,求实数a的取值范围24 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 平定县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A 【解析】人可以分为和两种结果,所以每所大学至少保送一人的不同保送的方法数为种,故选A2 【答案】D【解析】试题分析:由已知,所以,则,令 ,得,可知D正确故选D考点:三角函数的对称性3 【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题4 【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B5 【答案】D【解析】解:设等差数列an的公差为d,则S4=4a1+d=2,S5=5a1+d=0,联立解得,S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题6 【答案】【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.7 【答案】B 【解析】试题分析:因为,所以,又因为,所以,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.8 【答案】A 【解析】试题分析:,为奇函数,排除B,D,令时,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法.9 【答案】B【解析】解:函数是R上的增函数设g(x)=x2ax5(x1),h(x)=(x1)由分段函数的性质可知,函数g(x)=x2ax5在(,1单调递增,函数h(x)=在(1,+)单调递增,且g(1)h(1)解可得,3a2故选B10【答案】C 【解析】 i,因为实部与虚部相等,所以2b12b,即b.故选C.11【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大12【答案】C【解析】解:某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),1=90,1=86,2=93,2=79,第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础二、填空题13【答案】2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题14【答案】8 【解析】解:抛物线y2=8x=2px,p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=x+=x+2=10,x=8,故答案为:8【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解15【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好16【答案】【解析】 考点:简单的线性规划【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1)表示点与原点的距离;(2)表示点与点间的距离;(3)可表示点与点连线的斜率;(4)表示点与点连线的斜率.17【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题18【答案】(2,0)(2,+) 【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为增函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是减函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(2,0)(2,+)故答案为:(2,0)(2,+)三、解答题19【答案】【解析】解:(1)sin Bsin Asin C,由正弦定理得bac,又a4c,b5c,即b4c,由余弦定理得cos B.(2)SABC,B60.acsin B.即ac4.又a4c,a4,c1.由余弦定理得b2a2c22accos B421224113.b,ksin Bsin Asin C,由正弦定理得k,即k的值为.20【答案】【解析】(1),. 即,所以数列是以首项为2,公差为2的等差数列, . (5分)(2)数列是等差数列,. (8分). (12分)21【答案】 【解析】解:若命题p是真命题:“直线x+ym=0与圆(x1)2+y2=1相交”,则1,解得1;若命题q是真命题:“方程x2x+m4=0的两根异号”,则m40,解得m4若pq为真,p为真,则p为假命题,q为真命题实数m的取值范围是或【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题22【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程【解答】解:(1)由于直线x=4与圆C1不相交;直线l的斜率存在,设l方程为:y=k(x4)(1分)圆C1的圆心到直线l的距离为d,l被C1截得的弦长为2d=1(2分)d=从而k(24k+7)=0即k=0或k=直线l的方程为:y=0或7x+24y28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为yb=k(xa),k0则直线l2方程为:yb=(xa)(6分)C1和C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+akb|=|5k+4abk|1+3k+akb=(5k+4abk)即(a+b2)k=ba+3或(ab+8)k=a+b5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,)或点P2(,)(12分)23【答案】 【解析】解:直线x+ay2=0与圆x2+y2=1有公共点1a21,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代工外包合同标准文本
- 保利地暖合同标准文本
- 乔木购销合同标准文本
- 二零二五版厂区租赁协议书
- 二零二五公司内部合伙投资协议书
- 个人茶地出租合同样本
- 二零二五版人投资入股协议书
- 个人租房合同样本首
- 保险投保合同标准文本
- “像”-与-“不像”05年度美术教案
- 供应室的质量改进课件
- 机械公司产品销售合同签订评审申请表
- 统信UOS桌面版系统产品白皮书
- 年产1000吨甲壳素项目环评报告书
- 摄影培训教学课件:摄影用光
- 食品从业者工作服清洗消毒记录
- 化妆品经营使用单位现场检查表
- 骨料检测知识培训讲义
- DB33∕T 2387-2021 外贸综合服务企业服务规范
- 农药经营许可管理制度
- 通用精美电子小报模板(35)
评论
0/150
提交评论