已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
清流县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )ABCD2 设是奇函数,且在内是增函数,又,则的解集是( )A B C D 3 将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )Ax=BCD4 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)经过2个小时,这种细菌由1个可繁殖成( )A512个B256个C128个D64个5 函数f(x)=Asin(x+)(A0,0,)的部分图象如图所示,则函数y=f(x)对应的解析式为( )ABCD6 已知函数f(x)满足:x4,则f(x)=;当x4时f(x)=f(x+1),则f(2+log23)=( )ABCD7 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270由算得附表:参照附表,则下列结论正确的是( )有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;采用系统抽样方法比采用简单随机抽样方法更好;采用分层抽样方法比采用简单随机抽样方法更好;A B C D8 不等式x(x1)2的解集是( )Ax|2x1Bx|1x2Cx|x1或x2Dx|x2或x19 下面各组函数中为相同函数的是( )Af(x)=,g(x)=x1Bf(x)=,g(x)=Cf(x)=ln ex与g(x)=elnxDf(x)=(x1)0与g(x)=10“为真”是“为假”的( )条件A充分不必要 B必要不充分 C充要 D既不充分也不必要11若函数y=x2+(2a1)x+1在区间(,2上是减函数,则实数a的取值范围是( )A,+)B(,C,+)D(,12甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组70,8080,9090,100100,110频数34815分组110,120120,130130,140140,150频数15x32乙校:分组70,8080,9090,100100,110频数1289分组110,120120,130130,140140,150频数1010y3则x,y的值分别为 A、12,7 B、 10,7 C、 10,8 D、 11,9二、填空题13函数在点处的切线的斜率是 .14甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 15在(1+2x)10的展开式中,x2项的系数为(结果用数值表示)16已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是17在极坐标系中,点(2,)到直线(cos+sin)=6的距离为18(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值三、解答题19在正方体中分别为的中点.(1)求证:平面;(2)求异面直线与所成的角.111.Com20某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:当年平均盈利额达到最大值时,以30万元价格处理该机床;当盈利额达到最大值时,以12万元价格处理该机床问哪种方案处理较为合理?请说明理由21已知函数f(x)=lnxaxb(a,bR)()若函数f(x)在x=1处取得极值1,求a,b的值()讨论函数f(x)在区间(1,+)上的单调性()对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1x2),不等式f(x0)k恒成立,其中k为直线AB的斜率,x0=x1+(1)x2,01,求的取值范围 22 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 23已知f(x)=log3(1+x)log3(1x)(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x,时,不等式 f(x)g(x)有解,求k的取值范围24已知圆的极坐标方程为24cos()+6=0(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值 清流县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:如图所示,BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A=弦长超过圆内接等边三角形的边长=弦中点在内切圆内,由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是故选C【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答2 【答案】B【解析】试题分析:因为为奇函数且,所以,又因为在区间上为增函数且,所以当时,当时,再根据奇函数图象关于原点对称可知:当时,当时,所以满足的的取值范围是:或。故选B。考点:1.函数的奇偶性;2.函数的单调性。3 【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx,再向右平移个单位得到y=cos(x),由(x)=k,得x=2k,即+2k,kZ,当k=0时,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键4 【答案】D【解析】解:经过2个小时,总共分裂了=6次,则经过2小时,这种细菌能由1个繁殖到26=64个故选:D【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题5 【答案】A【解析】解:由函数的图象可得A=1, =,解得=2,再把点(,1)代入函数的解析式可得 sin(2+)=1,结合,可得=,故有,故选:A6 【答案】A【解析】解:32+log234,所以f(2+log23)=f(3+log23)且3+log234f(2+log23)=f(3+log23)=故选A7 【答案】D 【解析】解析:本题考查独立性检验与统计抽样调查方法由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,正确,选D8 【答案】B【解析】解:x(x1)2,x2x20,即(x2)(x+1)0,1x2,即不等式的解集为x|1x2故选:B9 【答案】D【解析】解:对于A:f(x)=|x1|,g(x)=x1,表达式不同,不是相同函数;对于B:f(x)的定义域是:x|x1或x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是x|x1,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题10【答案】B【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为假”时为真,必有“ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.11【答案】B【解析】解:函数y=x2+(2a1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又函数在区间(,2上是减函数,故2解得a故选B12【答案】B【解析】1从甲校抽取11060人,从乙校抽取11050人,故x10,y7.二、填空题13【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.14【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好15【答案】180 【解析】解:由二项式定理的通项公式Tr+1=Cnranr br可设含x2项的项是Tr+1=C7r (2x)r可知r=2,所以系数为C1024=180,故答案为:180【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等16【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:17【答案】1 【解析】解:点P(2,)化为P直线(cos+sin)=6化为点P到直线的距离d=1故答案为:1【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题18【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.三、解答题19【答案】(1)证明见解析;(2)【解析】(2)延长于,使,连结为所求角.设正方体边长为,则,与所成的角为.考点:直线与平行的判定;异面直线所成的角的计算.【方法点晴】本题主要考查了直线与平面平行的判定与证明、空间中异面直线所成的角的计算,其中解答中涉及到平行四边形的性质、正方体的结构特征、解三角形的相关知识的应用,着重考查了学生的空间想象能力以及学生分析问题和解答问题的能力,本题的解答中根据异面直线所成的角找到角为异面直线所成的角是解答的一个难点,属于中档试题.20【答案】 【解析】解:(1)y=2x2+40x98,xN*(2)由2x2+40x980解得,且xN*,所以x=3,4,17,故从第三年开始盈利(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为272+40798+30=114(万元)由y=2x2+40x98=2(x10)2+102102,所以按第二方案处理总利润为102+12=114(万元)由于第一方案使用时间短,则选第一方案较合理21【答案】 【解析】解:()f(x)的导数为f(x)=a,由题意可得f(1)=0,且f(1)=1,即为1a=0,且ab=1,解得a=1b=2,经检验符合题意故a=1,b=2;()由()可得f(x)=a,x1,01,若a0,f(x)0,f(x)在(1,+)递增;0a1,x(1,),f(x)0,x(,+),f(x)0;a1,f(x)0f(x)在(1,+)递减综上可得,a0,f(x)在(1,+)递增;0a1,f(x)在(1,)递增,在(,+)递减;a1,f(x)在(1,+)递减()f(x0)=a=a,直线AB的斜率为k=a,f(x0)k,即x2x1ln x1+(1)x2,即为1ln +(1),令t=1,t1lnt+(1)t,即t1tlnt+(tlntlnt)0恒成立,令函数g(t)=t1tlnt+(tlntlnt),t1,当0时,g(t)=lnt+(lnt+1)=,令(t)=tlnt+(tlnt+t1),t1,(t)=1lnt+(2+lnt)=(1)lnt+21,当0时,(t)0,(t)在(1,+)递减,则(t)(1)=0,故当t1时,g(t)0,则g(t)在(1,+)递减,g(t)g(1)=0符合题意;当1时,(t)=(1)lnt+210,解得1t,当t(1,),(t)0,(t)在(1,)递增,(t)(1)=0;当t(1,),g(t)0,g(t)在(1,)递增,g(t)g(1)=0,则有当t(1,),g(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计竞聘演讲范文5篇
- 山西省省级自然资源确权登记合同
- 电销年度工作总结范文10篇
- 农田林网苗木采购招投标
- 单边双通道内镜技术治疗腰椎间盘突出症和腰椎椎管狭窄症
- 领导发言稿的模板(10篇)
- 水上乐园水上冲浪引水工程合同
- 印刷企业财务主管招聘合同
- 城市地下通道热熔标线施工合同
- 2024年广告投放合同详细规定与标的
- 数学史上的三次数学危机
- 2024年水电暖安装承包合同
- 缺乳(乳汁淤积)产妇的中医护理
- 2024北师大版新教材初中数学七年级上册内容解读课件(深度)
- 2024年公共营养师三级考试试卷及答案
- 2024年上半年软考信息系统项目管理师真题
- 北京市西城区2023-2024学年高一下学期期末英语试题(解析版)
- 三位数乘两位数乘法竖式计算练习100道及答案
- 【金融模拟交易实践报告书3700字(论文)】
- 人教版美术六年级上册《第3课 远去的路》说课稿6
- iso220002024食品安全管理体系
评论
0/150
提交评论