高考数学一轮复习 第二章 函数概念与基本初等函数i 第2讲 函数的单调性与最大(小)值课件 理 北师大版_第1页
高考数学一轮复习 第二章 函数概念与基本初等函数i 第2讲 函数的单调性与最大(小)值课件 理 北师大版_第2页
高考数学一轮复习 第二章 函数概念与基本初等函数i 第2讲 函数的单调性与最大(小)值课件 理 北师大版_第3页
高考数学一轮复习 第二章 函数概念与基本初等函数i 第2讲 函数的单调性与最大(小)值课件 理 北师大版_第4页
高考数学一轮复习 第二章 函数概念与基本初等函数i 第2讲 函数的单调性与最大(小)值课件 理 北师大版_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲 函数的单调性与最大(小)值,最新考纲 1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图像分析函数的性质.,知 识 梳 理,1.函数的单调性 (1)单调函数的定义,f(x1)f(x2),f(x1)f(x2),上升的,下降的,(2)单调区间的定义 如果yf(x)在区间A上是增加的或是减少的,那么称A为单调区间.,2.函数的最值,f(x)M,f(x)M,f(x)M,诊 断 自 测,1.判断正误(在括号内打“”或“”) 精彩PPT展示,解析 (2)此单调区间不能用并集符号连接,取x11,x21,则f(1)f(1),故应说成单调递减区间为(,0)和(0,). (3)应对任意的x1x2,f(x1)f(x2)成立才可以. (4)若f(x)x,f(x)在1,)上为增函数,但yf(x)的单调递增区间可以是R. 答案 (1) (2) (3) (4),答案 A,3.如果二次函数f(x)3x22(a1)xb在区间(,1)上是减函数,那么( ) A.a2 B.a2 C.a2 D.a2,答案 C,4.函数f(x)lg x2的单调递减区间是_. 解析 f(x)的定义域为(,0)(0,), ylg u在(0,)上为增函数,ux2在(,0)上递减,在(0,)上递增,故f(x)在(,0)上单调递减. 答案 (,0),答案 2,答案 D,规律方法 (1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1). (2)函数单调性的判断方法有:定义法;图象法;利用已知函数的单调性;导数法. (3)函数yf(g(x)的单调性应根据外层函数yf(t)和内层函数tg(x)的单调性判断,遵循“同增异减”的原则.,答案 3 1,规律方法 (1)求函数最值的常用方法:单调性法; 基本不等式法;配方法;图象法;导数法. (2)利用单调性求最值,应先确定函数的单调性,然后根据性质求解.若函数f(x)在闭区间a,b上是增函数,则f(x)在a,b上的最大值为f(b),最小值为f(a).若函数f(x)在闭区间a,b上是减函数,则f(x)在a,b上的最大值为f(a),最小值为f(b).,答案 C,考点三 函数单调性的应用(典例迁移),规律方法 (1)利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组)或先得到其图象的升降,再结合图象求解. (2)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域.,思想方法 1.利用定义证明或判断函数单调性的步骤: (1)取值 ;(2)作差;(3)定号;(4)判断. 2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图像法,也可利用单调函数的和差确定单调性. 3.求函数最值的常用求法:单调性法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论