(数学)试题及答案详细解析.doc_第1页
(数学)试题及答案详细解析.doc_第2页
(数学)试题及答案详细解析.doc_第3页
(数学)试题及答案详细解析.doc_第4页
(数学)试题及答案详细解析.doc_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2005年全国硕士研究生入学统一考试数学一试题答案解析2005年全国硕士研究生入学统一考试数学一试题答案解析一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线 的斜渐近线方程为 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=, ,于是所求斜渐近线方程为(2) 微分方程满足的解为.【分析】 直接套用一阶线性微分方程的通解公式: ,再由初始条件确定任意常数即可.【详解】 原方程等价为,于是通解为 =,由得C=0,故所求解为(3)设函数,单位向量,则=.【分析】 函数u(x,y,z)沿单位向量的方向导数为: 因此,本题直接用上述公式即可.【详解】 因为 ,于是所求方向导数为 =(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则.【分析】 本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】 = (5)设均为3维列向量,记矩阵 , 如果,那么 2 .【分析】 将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 =,于是有 (6)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则= .【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 =+ + =二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数,则f(x)在内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. C 【分析】 先求出f(x)的表达式,再讨论其可导情形.【详解】 当时,; 当时,;当时,即 可见f(x)仅在x=时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有(A) F(x)是偶函数f(x)是奇函数. (B) F(x)是奇函数f(x)是偶函数.(C) F(x)是周期函数f(x)是周期函数. (D) F(x)是单调函数f(x)是单调函数. A 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为,且当F(x)为偶函数时,有,于是,即 ,也即,可见f(x)为奇函数;反过来,若f(x)为奇函数,则为偶函数,从而为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=, 排除(D); 故应选(A).(9)设函数, 其中函数具有二阶导数, 具有一阶导数,则必有 (A) . (B) .(C) . (D) . B 【分析】 先分别求出、,再比较答案即可.【详解】 因为, ,于是 , , ,可见有,应选(B).(10)设有三元方程,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (A) 只能确定一个具有连续偏导数的隐函数z=z(x,y). (B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y). (D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). D 【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=, 分别求出三个偏导数,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=, 则 , ,且 ,. 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . B 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 ,则 , .由于线性无关,于是有 当时,显然有,此时,线性无关;反过来,若,线性无关,则必然有(,否则,与=线性相关),故应选(B).方法二: 由于 ,可见,线性无关的充要条件是故应选(B).(12)设A为n()阶可逆矩阵,交换A的第1行与第2行得矩阵B, 分别为A,B的伴随矩阵,则(A) 交换的第1列与第2列得. (B) 交换的第1行与第2行得. (C) 交换的第1列与第2列得. (D) 交换的第1行与第2行得. C 【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵(交换n阶单位矩阵的第1行与第2行所得),使得 ,于是 ,即 ,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 B 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b的取值.【详解】 由题设,知 a+b=0.5又事件与相互独立,于是有 ,即 a=, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设为来自总体N(0,1)的简单随机样本,为样本均值,为样本方差,则(A) (B) (C) (D) D 【分析】 利用正态总体抽样分布的性质和分布、t分布及F分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,可排除(A); 又,可排除(C); 而,不能断定(B)是正确选项. 因为 ,且相互独立,于是 故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设,表示不超过的最大整数. 计算二重积分 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 , .则 = (16)(本题满分12分)求幂级数的收敛区间与和函数f(x). 【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为,所以当时,原级数绝对收敛,当时,原级数发散,因此原级数的收敛半径为1,收敛区间为(1,1)记则由于所以又从而(17)(本题满分11分) 如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线与分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, ; f(3)=2, 由分部积分,知 = =(18)(本题满分12分)已知函数f(x)在0,1上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I)存在 使得;(II)存在两个不同的点,使得【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I)令,则F(x)在0,1上连续,且F(0)=-10,于是由介值定理知,存在存在 使得,即.(II) 在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是 (19)(本题满分12分)设函数具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.(I)证明:对右半平面x0内的任意分段光滑简单闭曲线C,有;(II)求函数的表达式.【分析】 证明(I)的关键是如何将封闭曲线C与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C进行分解讨论;而(II)中求的表达式,显然应用积分与路径无关即可. Y【详解】 (I) l2 C o X l3如图,将C分解为:,另作一条曲线围绕原点且与C相接,则 .(II) 设,在单连通区域内具有一阶连续偏导数,由()知,曲线积分在该区域内与路径无关,故当时,总有. 比较、两式的右端,得由得,将代入得所以,从而(20)(本题满分9分)已知二次型的秩为2.(I) 求a的值;(II) 求正交变换,把化成标准形;(III) 求方程=0的解.【分析】 (I)根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a的值;(II)是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III) 利用第二步的结果,通过标准形求解即可.【详解】 (I) 二次型对应矩阵为 ,由二次型的秩为2,知 ,得a=0.(II) 这里, 可求出其特征值为.解 ,得特征向量为:,解 ,得特征向量为:由于已经正交,直接将,单位化,得:令,即为所求的正交变换矩阵,由x=Qy,可化原二次型为标准形:=(III) 由=0,得(k为任意常数).从而所求解为:x=Qy=,其中c为任意常数.(21)(本题满分9分)已知3阶矩阵A的第一行是不全为零,矩阵(k为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A的秩.【详解】 由AB=O知,B的每一列均为Ax=0的解,且(1)若k, 则r(B)=2, 于是r(A), 显然r(A), 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:为任意常数.(2) 若k=9,则r(B)=1, 从而1) 若r(A)=2, 则Ax=0的通解为:为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:,不妨设,则其通解为 为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 求:(I) (X,Y)的边缘概率密度; (II)的概率密度【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I) 关于X的边缘概率密度= =关于Y的边缘概率密度= = (II) 令,1) 当时,;2) 当时, =; 3) 当时,即分布函数为: 故所求的概率密度为:(23)(本题满分9分)设为来自总体N(0,1)的简单随机样本,为样本均值,记求:(I) 的方差; (II)与的协方差【分析】 先将表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求与的协方差,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知相互独立,且,(I) = =(II) = = = = =2006年全国硕士研究生入学统一考试数学一试题答案解析二、 填空题:16小题,每小题4分,共24分. 把答案填在题中横线上.(1) 【分析】 本题为未定式极限的求解,利用等价无穷小代换即可.【详解】 . (2) 微分方程的通解是【分析】 本方程为可分离变量型,先分离变量,然后两边积分即可【详解】 原方程等价为,两边积分得,整理得.()(3)设是锥面的下侧,则.【分析】 本题不是封闭曲面,首先想到加一曲面:,取上侧,使构成封闭曲面,然后利用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】 设:,取上侧,则 .而,.所以.(4)点到平面的距离.【分析】 本题直接利用点到平面距离公式进行计算即可.其中为点的坐标,为平面方程.【详解】 . (5)设矩阵,为2阶单位矩阵,矩阵满足,则 2 .【分析】 将矩阵方程改写为的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 于是有 ,而,所以.(6)设随机变量相互独立,且均服从区间上的均匀分布,则 .【分析】 利用的独立性及分布计算.【详解】 由题设知,具有相同的概率密度.则.【评注】 本题属几何概型,也可如下计算,如下图:则.二、选择题:714小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则(A) . (B) .(C) . (D) . 【分析】 题设条件有明显的几何意义,用图示法求解.【详解】 由知,函数单调增加,曲线凹向,作函数的图形如右图所示,显然当时,故应选(). (8)设为连续函数,则等于(). (B).(C).(D) . 【分析】 本题首先由题设画出积分区域的图形,然后化为直角坐标系下累次积分即可.【详解】 由题设可知积分区域如右图所示,显然是型域,则原式.故选().(9)若级数收敛,则级数(A) 收敛 . (B)收敛.(C) 收敛. (D) 收敛. 【分析】 可以通过举反例及级数的性质来判定.【详解】 由收敛知收敛,所以级数收敛,故应选().或利用排除法:取,则可排除选项(),();取,则可排除选项().故()项正确.(10)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是(A) 若,则. (B) 若,则. (C) 若,则. (D) 若,则. 【分析】 利用拉格朗日函数在(是对应的参数的值)取到极值的必要条件即可.【详解】 作拉格朗日函数,并记对应的参数的值为,则 , 即 .消去,得 ,整理得.(因为),若,则.故选().(11)设均为维列向量,为矩阵,下列选项正确的是(B) 若线性相关,则线性相关. (C) 若线性相关,则线性无关. (C) 若线性无关,则线性相关. (D) 若线性无关,则线性无关. C 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】 记,则.所以,若向量组线性相关,则,从而,向量组也线性相关,故应选().(12)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则().().().().【分析】 利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】 由题设可得,而,则有.故应选().(13)设为随机事件,且,则必有(B) (B) (C) (D) B 【分析】 利用事件和的运算和条件概率的概念即可.【详解】 由题设,知 ,即.又.故应选().(14)设随机变量服从正态分布,服从正态分布,且则必有(B) (B) (C) (D) D 【分析】 利用标准正态分布密度曲线的几何意义可得.【详解】 由题设可得,则,即.其中是标准正态分布的分布函数.又是单调不减函数,则,即.故选(A).三 、解答题:1523小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设区域, 计算二重积分 【分析】 由于积分区域关于轴对称,故可先利用二重积分的对称性结论简化所求积分,又积分区域为圆域的一部分,则将其化为极坐标系下累次积分即可.【详解】 积分区域如右图所示.因为区域关于轴对称,函数是变量的偶函数,函数是变量的奇函数.则 ,故. (16)(本题满分12分)设数列满足()证明存在,并求该极限;()计算. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. ()的计算需利用()的结果.【详解】 ()因为,则.可推得,则数列有界.于是,(因当), 则有,可见数列单调减少,故由单调减少有下界数列必有极限知极限存在.设,在两边令,得,解得,即.()因,由()知该极限为型,令,则,而,又.(利用了的麦克劳林展开式)故.(17)(本题满分12分) 将函数展成的幂级数. 【分析】 利用常见函数的幂级数展开式.【详解】 ,比较两边系数可得,即.而,故.(18)(本题满分12分)设函数在内具有二阶导数,且满足等式.(I)验证;(II)若,求函数的表达式. 【分析】 利用复合函数偏导数计算方法求出代入即可得(I).按常规方法解(II)即可.【详解】 (I) 设,则.,.将代入得.(II) 令,则,两边积分得,即,亦即.由可得.所以有,两边积分得,由可得,故.(19)(本题满分12分)设在上半平面内,函数具有连续偏导数,且对任意的都有.证明:对内的任意分段光滑的有向简单闭曲线,都有.【分析】 利用曲线积分与路径无关的条件. 【详解】 两边对求导得.令 ,则.设,则.则由可得.故由曲线积分与路径无关的定理可知,对内的任意分段光滑的有向简单闭曲线,都有.(20)(本题满分9分)已知非齐次线性方程组有3个线性无关的解.()证明方程组系数矩阵的秩;()求的值及方程组的通解.【分析】 (I)根据系数矩阵的秩与基础解系的关系证明;(II)利用初等变换求矩阵的秩确定参数,然后解方程组.【详解】 (I) 设是方程组的3个线性无关的解,其中 .则有.则是对应齐次线性方程组的解,且线性无关.(否则,易推出线性相关,矛盾).所以,即.又矩阵中有一个2阶子式,所以.因此.(II) 因为.又,则 .对原方程组的增广矩阵施行初等行变换,故原方程组与下面的方程组同解.选为自由变量,则.故所求通解为,为任意常数.(21)(本题满分9分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解.()求的特征值与特征向量;()求正交矩阵和对角矩阵,使得.【分析】 由矩阵的各行元素之和均为3及矩阵乘法可得矩阵的一个特征值和对应的特征向量;由齐次线性方程组有非零解可知必有零特征值,其非零解是0特征值所对应的特征向量.将的线性无关的特征向量正交化可得正交矩阵.【详解】 ()因为矩阵的各行元素之和均为3,所以,则由特征值和特征向量的定义知,是矩阵的特征值,是对应的特征向量.对应的全部特征向量为,其中为不为零的常数.又由题设知,即,而且线性无关,所以是矩阵的二重特征值,是其对应的特征向量,对应的全部特征向量为,其中为不全为零的常数.()因为是实对称矩阵,所以与正交,所以只需将正交.取,.再将单位化,得,令,则,由是实对称矩阵必可相似对角化,得.(22)(本题满分9分)设随机变量的概率密度为,令为二维随机变量的分布函数.()求的概率密度().【分析】 求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算.【详解】 (I)设的分布函数为,即,则1) 当时,;2) 当时, .3) 当时,.4) 当,.所以.(II) .(23)(本题满分9分)设总体的概率密度为其中是未知参数,为来自总体的简单随机样本,记为样本值中小于1的个数,求的最大似然估计.【分析】 先写出似然函数,然后用最大似然估计法计算的最大似然估计.【详解】 记似然函数为,则.两边取对数得,令,解得为的最大似然估计.2007年全国硕士研究生入学统一考试数学一试题答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当时,与等价的无穷小量是(A) . (B) . (C) . (D) . B 【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】 当时,有; 利用排除法知应选(B). (2) 曲线,渐近线的条数为(A) 0. (B) 1. (C) 2. (D) 3. D 【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。【详解】 因为,所以为垂直渐近线;又 ,所以y=0为水平渐近线;进一步,=, = =,于是有斜渐近线:y = x. 故应选(D).(3) 如图,连续函数y=f(x)在区间3,2,2,3上的图形分别是直径为1的上、下半圆周,在区间2,0,0,2的图形分别是直径为2的上、下半圆周,设则下列结论正确的是(A) . (B) . (C) . (D) . C 【分析】 本题考查定积分的几何意义,应注意f(x)在不同区间段上的符号,从而搞清楚相应积分与面积的关系。【详解】 根据定积分的几何意义,知F(2)为半径是1的半圆面积:,F(3)是两个半圆面积之差:=,因此应选(C).(4) 设函数f(x)在x=0处连续,下列命题错误的是(A) 若存在,则f(0)=0. (B) 若存在,则f(0)=0. (C) 若存在,则存在. (D) 若存在,则存在 D 【分析】 本题为极限的逆问题,已知某极限存在的情况下,需要利用极限的四则运算等进行分析讨论。【详解】 (A),(B)两项中分母的极限为0,因此分子的极限也必须为0,均可推导出f(0)=0.若存在,则,可见(C)也正确,故应选(D). 事实上,可举反例:在x=0处连续,且=存在,但在x=0处不可导。(5) 设函数f (x)在上具有二阶导数,且 令, 则下列结论正确的是(A) 若,则必收敛. (B) 若,则必发散. (C) 若,则必收敛. (D) 若,则必发散. D 【分析】 可直接证明或利用反例通过排除法进行讨论。【详解】 设f(x)=, 则f (x)在上具有二阶导数,且,但发散,排除(C); 设f(x)=, 则f(x)在上具有二阶导数,且,但收敛,排除(B); 又若设,则f(x)在上具有二阶导数,且,但发散,排除(A). 故应选(D).(6) 设曲线具有一阶连续偏导数),过第II象限内的点M和第IV象限内的点N,T为L上从点M到点N的一段弧,则下列小于零的是(A) . (B) . (C) . (D) . B 【分析】 直接计算出四个积分的值,从而可确定正确选项。【详解】 设M 、N点的坐标分别为. 先将曲线方程代入积分表达式,再计算有: ; ; .故正确选项为(B). (7) 设向量组线性无关,则下列向量组线性相关的是(A) . (B) . (C) . (D) . A 【详解】用定义进行判定:令,得 .因线性无关,所以 又 , 故上述齐次线性方程组有非零解, 即线性相关. 类似可得(B), (C), (D)中的向量组都是线性无关的. (8) 设矩阵, , 则A与B (A) 合同, 且相似. (B) 合同, 但不相似 . (C) 不合同, 但相似. (D) 既不合同, 又不相似. B 【详解】 由 得A的特征值为0, 3, 3, 而B的特征值为0, 1, 1,从而A与B不相似. 又r(A)=r(B)=2, 且A、B有相同的正惯性指数, 因此A与B合同. 故选(B) .(9) 某人向同一目标独立重复射击,每次射击命中目标的概率为p(0p1), 则此人第4次射击恰好第2次命中目标的概率为(A) (B) .(C) (D) C 【详解】 “第4次射击恰好第2次命中”表示4次射击中第4次命中目标, 前3次射击中有1次命中目标, 由独立重复性知所求概率为:. 故选(C) . (10) 设随机变量(,)服从二维正态分布,且与不相关,分别表示,的概率密度,则在y的条件下,的条件概率密度为(A) (B) (C ) . (D) A 【详解】 因(,)服从二维正态分布,且与不相关,故与相互独立,于是 =. 因此选(A) .二、填空题:(1116小题,每小题4分,共24分. 把答案填在题中横线上)(11) = 【分析】 先作变量代换,再分部积分。【详解】 = (12) 设f(u,v)为二元可微函数,则=【详解】 利用复合函数求偏导公式,有= (13) 二阶常系数非齐次线性微分方程的通解为 其中为任意常数.【详解】 特征方程为 ,解得 可见对应齐次线性微分方程的通解为 设非齐次线性微分方程的特解为,代入非齐次方程可得k= 2. 故通解为(14) 设曲面,则= 【详解】 由于曲面关于平面x=0对称,因此=0. 又曲面具有轮换对称性,于是=(15) 设矩阵, 则的秩为1.【详解】 依矩阵乘法直接计算得 , 故r()=1. (16) 在区间(0, 1)中随机地取两个数, 则两数之差的绝对值小于的概率为【详解】 这是一个几何概型, 设x, y为所取的两个数, 则样本空间, 记.故 ,其中分别表示A与W 的面积. 三、解答题:(1724小题,共86分. ) (17) (本题满分11分) 求函数在区域上的最大值和最小值。【分析】 由于D为闭区域,在开区域内按无条件极值分析,而在边界上按条件极值讨论即可。【详解】 因为 ,解方程: 得开区域内的可能极值点为.其对应函数值为又当y=0 时,在上的最大值为4,最小值为0.当,构造拉格朗日函数 解方程组 得可能极值点:,其对应函数值为 比较函数值,知f(x, y)在区域D上的最大值为8,最小值为0. (18) (本题满分10分)计算曲面积分 其中为曲面的上侧。【分析】 本题曲面不封闭,可考虑先添加一平面域使其封闭,在封闭曲面所围成的区域内用高斯公式,而在添加的平面域上直接投影即可。【详解】 补充曲面:,取下侧. 则 =其中为与所围成的空间区域,D为平面区域. 由于区域D关于x轴对称,因此. 又=其中.(19) (本题满分11分)设函数f(x), g(x)在a, b上连续,在(a, b)内具有二阶导数且存在相等的最大值,f(a)=g(a), f(b)=g(b), 证明:存在,使得【分析】 需要证明的结论与导数有关,自然联想到用微分中值定理。事实上,若令,则问题转化为证明, 只需对用罗尔定理,关键是找到的端点函数值相等的区间(特别是两个一阶导数同时为零的点),而利用F(a)=F(b)=0, 若能再找一点,使得,则在区间上两次利用罗尔定理有一阶导函数相等的两点,再对用罗尔定理即可。【证明】 构造辅助函数,由题设有F(a)=F(b)=0. 又f(x), g(x)在(a, b)内具有相等的最大值, 不妨设存在, 使得,若,令, 则若,因,从而存在,使 在区间上分别利用罗尔定理知,存在,使得. 再对在区间上应用罗尔定理,知存在,有, 即 (20) (本题满分10分)设幂级数在内收敛,其和函数y(x)满足(I) 证明:(II) 求y(x)的表达式.【分析】 先将和函数求一阶、二阶导,再代入微分方程,引出系数之间的递推关系。【详解】 (I)记y(x)=, 则代入微分方程有即 故有 即 (II) 由初始条件知, 于是根据递推关系式 有 故y(x)= =(21) (本题满分11分)设线性方程组 与方程 有公共解,求a的值及所有公共解【分析】 两个方程有公共解就是与联立起来的非齐次线性方程组有解. 【详解】 将与联立得非齐次线性方程组: 若此非齐次线性方程组有解, 则与有公共解, 且的解即为所求全部公共解. 对的增广矩阵作初等行变换得: .于是1 当a=1时,有=23,方程组有解, 即与有公共解, 其全部公共解即为的通解,此时,此时方程组为齐次线性方程组,其基础解系为: ,所以与的全部公共解为,k为任意常数.2 当a =2时,有=3,方程组有唯一解, 此时,故方程组的解为: , 即与有唯一公共解: 为. (22) (本题满分11分)设3阶对称矩阵的特征值 是的属于的一个特征向量,记其中为3阶单位矩阵.(I) 验证是矩阵的特征向量,并求B的全部特征值与特征向量(II) 求矩阵【分析】 根据特征值的性质可立即得B的特征值, 然后由B也是对称矩阵可求出其另外两个线性无关的特征向量.【详解】 (I) 由 得 , 进一步 , ,故 ,从而是矩阵的属于特征值2的特征向量.因, 及的3个特征值 得B的3个特征值为.设为B的属于的两个线性无关的特征向量, 又为对称矩阵,得B也是对称矩阵, 因此与正交, 即所以可取为下列齐次线性方程组两个线性无关的解: ,其基础解系为: , , 故可取=, =.即B的全部特征值的特征向量为: , , 其中,是不为零的任意常数, 是不同时为零的任意常数.(II) 令=, 则 ,得 =. (23) (本题满分11分) 设二维随机变量(X, Y)的概率密度为 (I) 求;(II) 求Z+的概率密度.【详解】 (I) .( II) 先求Z的分布函数: 当Z0时, ;当时, ;当时, ;当时, .故Z+的概率密度为= (24) (数1, 3)(本题满分11分) 设总体X的概率密度为 其中参数(01)未知, 是来自总体X的简单随机样本, 是样本均值(I) 求参数的矩估计量;(II) 判断是否为的无偏估计量,并说明理由.【详解】 (I) 令 , 其中 ,解方程得的矩估计量为: =.(II) ,而 ,故,所以不是的无偏估计量.2008年全国硕士研究生入学统一考试数学一试题答案解析一、选择题:(本题共8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数,则的零点个数为【 】(A) 0. (B) 1. (C) 2. (D) 3【答案】应选(B).【详解】显然在区间上连续,且,由零点定理,知至少有一个零点又,恒大于零,所以在上是单调递增的又因为,根据其单调性可知,至多有一个零点故有且只有一个零点故应选(B).(2)函数在点(0,1)处的梯度等于【 】(A) (B) . (C) . (D) . 【答案】 应选(A).【详解】因为所以,于是.故应选(A).(3)在下列微分方程中,以(为任意的常数)为通解的是【 】(A) . (B) . (C) . (D) . 【答案】 应选(D).【详解】由,可知其特征根为,故对应的特征值方程为所以所求微分方程为应选(D).(4)设函数在内单调有界,为数列,下列命题正确的是【 】(A) 若收敛,则收敛 (B) 若单调,则收敛 (C) 若收敛,则收敛. (D) 若单调,则收敛. 【答案】 应选(B).【详解】若单调,则由函数在内单调有界知,若单调有界,因此若收敛故应选(B).(5)设为阶非零矩阵,为阶单位矩阵若,则【 】 则下列结论正确的是:(A) 不可逆,则不可逆. (B) 不可逆,则可逆.(C) 可逆,则可逆. (D) 可逆,则不可逆. 【答案】应选(C).【详解】故应选(C).,故,均可逆故应选(C).(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图,则的正特征值个数为【 】(A) 0. (B) 1. (C) 2. (D) 3. 【答案】 应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为故的正特征值个数为1故应选(B).(7) 设随机变量独立同分布且的分布函数为,则的分布函数为【 】(A) . (B) . (C) . (D) .【答案】应选(A)【详解】故应选(A)(8)设随机变量, , 且相关系数,则【 】(A) (B) (C) (D) 【答案】应选 (D)【详解】用排除法设由,知,正相关,得排除(A)和(C)由,得,从而排除(B).故应选 (D)二、填空题:(914小题,每小题4分,共24分. 把答案填在题中横线上.)(9)微分方程满足条件的解是 .【答案】 应填【详解】由,得两边积分,得代入条件,得所以(10)曲线在点的切线方程为 .【答案】 应填【详解】设,则,于是斜率故所求得切线方程为(11)已知幂级数在处收敛,在处发散,则幂级数的收敛域为 .【答案】 【详解】由题意,知的收敛域为,则的收敛域为所以的收敛域为(12)设曲面是的上侧,则 .【答案】 【详解】作辅助面取下侧则由高斯公式,有(13) 设为2阶矩阵,为线性无关的2维列向量,则的非零特征值为_.【答案】应填1【详解】根据题设条件,得记,因线性无关,故是可逆矩阵因此,从而记,则与相似,从而有相同的特征值因为,故的非零特征值为1(14) 设随机变量服从参数为1的泊松分布,则_【答案】应填.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论