已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十三章 推理与证明、算法、复数 13.5 复数教师用书 理 新人教版1复数的有关概念(1)定义:形如abi(a,bR)的数叫做复数,其中a叫做复数z的实部,b叫做复数z的虚部(i为虚数单位)(2)分类:满足条件(a,b为实数)复数的分类abi为实数b0abi为虚数b0abi为纯虚数a0且b0(3)复数相等:abicdiac且bd(a,b,c,dR)(4)共轭复数:abi与cdi共轭ac,bd(a,b,c,dR)(5)模:向量的模叫做复数zabi的模,记作|abi|或|z|,即|z|abi|(a,bR)2复数的几何意义复数zabi与复平面内的点Z(a,b)及平面向量(a,b)(a,bR)是一一对应关系3复数的运算(1)运算法则:设z1abi,z2cdi,a,b,c,dR(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加减法的几何意义,即,.【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)方程x2x10没有解()(2)复数zabi(a,bR)中,虚部为bi.()(3)复数中有相等复数的概念,因此复数可以比较大小()(4)原点是实轴与虚轴的交点()(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模()1(2016全国乙卷)设(12i)(ai)的实部与虚部相等,其中a为实数,则a等于()A3 B2 C2 D3答案A解析(12i)(ai)a2(2a1)i,a22a1,解得a3,故选A.2(2015课标全国)已知复数z满足(z1)i1i,则z等于()A2i B2i C2i D2i答案C解析由(z1)i1i,两边同乘以i,则有z11i,所以z2i.3(2016黄山一模)设i是虚数单位,若zcos isin ,且其对应的点位于复平面内的第二象限,则位于()A第一象限 B第二象限C第三象限 D第四象限答案B解析zcos isin 对应的点的坐标为(cos ,sin ),且点(cos ,sin )位于第二象限,为第二象限角,故选B.4(教材改编)在复平面内,向量对应的复数是2i,向量对应的复数是13i,则向量对应的复数是()A12i B12iC34i D34i答案D解析13i(2i)34i.5i2 011i2 012i2 013i2 014i2 015i2 016i2 017_.答案1解析原式i3i4i1i2i3i4i1.题型一复数的概念例1(1)(2015福建)若(1i)(23i)abi(a,bR,i是虚数单位),则a,b的值分别等于()A3,2 B3,2C3,3 D1,4(2)若z1(m2m1)(m2m4)i(mR),z232i,则“m1”是“z1z2”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分又不必要条件(3)(2016天津)i是虚数单位,复数z满足(1i)z2,则z的实部为_答案(1)A(2)A(3)1解析(1)(1i)(23i)32iabi,a3,b2,故选A.(2)由解得m2或m1,所以“m1”是“z1z2”的充分不必要条件(3)(1i)z2,z1i,其实部为1.引申探究1将本例(1)中方程左边改为(1i)(23i),求a,b的值解(1i)(23i)23i5iabi,所以a5,b1.2将本例(3)中的条件“(1i)z2”改为“(1i)3z2”,求z的实部解zi,z的实部为.思维升华解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可(2)解题时一定要先看复数是否为abi(a,bR)的形式,以确定实部和虚部(1)已知aR,复数z12ai,z212i,若为纯虚数,则复数的虚部为()A1 Bi C. D0(2)已知复数z满足z24,若z的虚部大于0,则z_.答案(1)A(2)2i解析(1)由i是纯虚数,得a1,此时i,其虚部为1.(2)设zabi(a,bR,b0),则z2a2b22abi4,因此a0,b24,b2,又b0,b2,z2i.题型二复数的运算命题点1复数的乘法运算例2(1)(2016四川)设i为虚数单位,则复数(1i)2等于()A0 B2 C2i D22i(2)(2016全国乙卷)设(1i)x1yi,其中x,y是实数,则|xyi|等于()A1 B. C. D2(3)(2015课标全国)若a为实数,且(2ai)(a2i)4i,则a等于()A1 B0 C1 D2答案(1)C(2)B(3)B解析(1)(1i)212i22i112i2i.(2)由(1i)x1yi,得xxi1yi所以|xyi|,故选B.(3)因为a为实数,且(2ai)(a2i)4a(a24)i4i,得4a0且a244,解得a0,故选B.命题点2复数的除法运算例3(1)(2016全国丙卷)若z12i,则等于()A1 B1 Ci Di(2)(2016北京)复数等于()Ai B1i Ci D1i(3)()6_.答案(1)C(2)A(3)1i解析(1)z12i,z5,i.(2)i.(3)原式6i61i.命题点3复数的综合运算例4(1)(2016山东)若复数z满足2z32i,其中i为虚数单位,则z等于()A12i B12iC12i D12i(2)(2016全国丙卷)若z43i,则等于()A1 B1Ci Di(3)若复数z满足(34i)z|43i|,则z的虚部为()A4 B C4 D.答案(1)B(2)D(3)D解析(1)设zabi(a,bR),则abi,2(abi)(abi)32i,整理得3abi32i,解得z12i,故选B.(2)z43i,|z|5,i.(3)设zabi,故(34i)(abi)3a3bi4ai4b|43i|,所以解得b.思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法复数的乘法类似于多项式的四则运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可(2)复数的除法除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式. (3)复数的运算与复数概念的综合题先利用复数的运算法则化简,一般化为abi(a,bR)的形式,再结合相关定义解答(4)复数的运算与复数几何意义的综合题先利用复数的运算法则化简,一般化为abi(a,bR)的形式,再结合复数的几何意义解答(5)复数的综合运算分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的(1)(2015山东)若复数z满足i,其中i为虚数单位,则z等于()A1i B1i C1i D1i(2)2 017_.(3)2 017_.答案(1)A(2)i(3)(1)i解析(1)i(1i)1i,z1i,故选A.(2)()2 0172 017i2 017i.(3)()2 017()()21 008ii1 008(1i)(1)i.题型三复数的几何意义例5(1)ABC的三个顶点对应的复数分别为z1,z2,z3,若复数z满足|zz1|zz2|zz3|,则z对应的点为ABC的()A内心 B垂心C重心 D外心答案D解析由几何意义知,复数z对应的点到ABC三个顶点距离都相等,z对应的点是ABC的外心(2)如图所示,平行四边形OABC,顶点O,A,C分别表示0,32i,24i,试求:、所表示的复数;对角线所表示的复数;B点对应的复数解,所表示的复数为32i.,所表示的复数为32i.,所表示的复数为(32i)(24i)52i.,所表示的复数为(32i)(24i)16i,即B点对应的复数为16i.思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可已知z是复数,z2i,均为实数(i为虚数单位),且复数(zai)2在复平面内对应的点在第一象限,求实数a的取值范围解设zxyi(x,yR),z2ix(y2)i,由题意得y2.(x2i)(2i)(2x2)(x4)i,由题意得x4.z42i.(zai)2(124aa2)8(a2)i,根据条件,可知解得2a0,b0,且(1ai)(bi)5i(i是虚数单位),则ab等于()A. B2 C2 D4答案D解析由题意得(1ai)(bi)(ba)(1ab)i5i,则又a0,b0,所以ab2,则ab4.2(2017天津质检)已知i为虚数单位,aR,如果复数2i是实数,则a的值为()A4 B2 C2 D4答案D解析2i2i2ii(2)i,aR,20,a4.3若i为虚数单位,图中复平面内点Z表示复数z,则表示复数的点是()AE BF CG DH答案D解析由题图知复数z3i,2i.表示复数的点为H.4(2017南昌月考)是z的共轭复数,若z2,(z)i2(i为虚数单位),则z等于()A1i B1iC1i D1i答案D解析方法一设zabi,a,b为实数,则abi.z2a2,a1.又(z)i2bi22b2,b1.故z1i.方法二(z)i2,z2i.又z2,(z)(z)2i2,2z2i2,z1i.5(2016新乡、许昌、平顶山调研)复数z1,z2满足z1m(4m2)i,z22cos (3sin )i(m,R),并且z1z2,则的取值范围是()A1,1 BC D答案C解析由复数相等的充要条件可得 化简得44cos23sin ,由此可得4cos23sin 44(1sin2)3sin 44sin23sin 42,因为sin 1,1,所以4sin23sin .6已知0a2,复数z的实部为a,虚部为1,则|z|的取值范围是()A(1,5) B(1,3)C(1,) D(1,)答案C解析由于复数z的实部为a,虚部为1,且0a2,所以由|z|,得1|z|2,点(a,b)在圆x2y22外8复数(3i)m(2i)对应的点在第三象限内,则实数m的取值范围是_答案(,)解析z(3m2)(m1)i,其对应点(3m2,m1)在第三象限内,故3m20且m10,mb,则aibi;若aR,则(a1)i是纯虚数;若zi,则z31在复平面内对应的点位于第一象限其中正确的命题是_(填上所有正确命题的序号)答案解析由复数的概念及性质知,错误;错误;若a1,则(a1)i0,错误;z31(i)31i1,正确13计算:(1);(2);(3);(4).解(1)13i.(2)i.(3)1.(4)i.14复数z1(10a2)i,z2(2a5)i,若1z2是实数,求实数a的值解1z2(a210)i(2a5)i(a210)(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024医院临时工聘用合同参考范文
- 2024房屋转租合同简单版范本
- 2024钟点工劳动合同范本
- 2024绿化养护管理委托版合同
- 2024总经销合同范本范文
- 施工合同协议书样本
- 终止业务往来协议书
- 2024年软件变更协议书范文
- 商业秘密保护技术协议书
- 2023年高考地理重点难点考点通练-产业结构升级(解析版)
- 中药饮片处方点评表
- 《节能监察的概念及其作用》
- 综合布线系统竣工验收表
- 蔬菜会员卡策划营销推广方案多篇
- 导管滑脱应急预案及处理流程
- (精选word)三对三篮球比赛记录表
- 尿道损伤(教学课件)
- 大型火力发电厂专业词汇中英文翻译大全
- 火电厂生产岗位技术问答1000问(电力检修)
- 八年级思想读本《4.1“涉险滩”与“啃硬骨头”》教案(定稿)
- 高中语文教学课例《荷塘月色》课程思政核心素养教学设计及总结反思
评论
0/150
提交评论