已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷未央区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即(),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的,则此次数学考试成绩在100分到110分之间的人数约为( )(A) 400 ( B ) 500 (C) 600 (D) 8002 若函数f(x)=2sin(x+)对任意x都有f(+x)=f(x),则f()=( )A2或0B0C2或0D2或23 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D64 若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是( )A(2,4)B(2,4)C(4,2)D(4,2)5 如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为( )ABCD6 设a,b为实数,若复数,则ab=( )A2B1C1D27 设sin(+)=,则sin2=( )ABCD8 设曲线y=ax2在点(1,a)处的切线与直线2xy6=0平行,则a=( )A1BCD19 “1x2”是“x2”成立的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件10将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )Ax=BCD11德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个12若f(x)=x22x4lnx,则f(x)0的解集为( )A(0,+)B(1,0)(2,+)C(2,+)D(1,0)二、填空题13已知复数,则1+z50+z100=14如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是15在棱长为1的正方体ABCDA1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动现有下列命题:若点P总保持PABD1,则动点P的轨迹所在曲线是直线;若点P到点A的距离为,则动点P的轨迹所在曲线是圆;若P满足MAP=MAC1,则动点P的轨迹所在曲线是椭圆;若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝其中真命题是(写出所有真命题的序号)16设是空间中给定的个不同的点,则使成立的点的个数有_个17设所有方程可以写成(x1)sin(y2)cos=1(0,2)的直线l组成的集合记为L,则下列说法正确的是;直线l的倾斜角为;存在定点A,使得对任意lL都有点A到直线l的距离为定值;存在定圆C,使得对任意lL都有直线l与圆C相交;任意l1L,必存在唯一l2L,使得l1l2;任意l1L,必存在唯一l2L,使得l1l218已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 三、解答题19已知等差数列an的首项和公差都为2,且a1、a8分别为等比数列bn的第一、第四项(1)求数列an、bn的通项公式;(2)设cn=,求cn的前n项和Sn20某同学用“五点法”画函数f(x)=Asin(x+)+B(A0,0,|)在某一个周期内的图象时,列表并填入的部分数据如表: xx1x2x3x+02Asin(x+)+B000()请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;()将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间0,m(3m4)上的图象的最高点和最低点分别为M,N,求向量与夹角的大小21(本小题满分16分) 给出定义在上的两个函数,. (1)若在处取最值求的值; (2)若函数在区间上单调递减,求实数的取值范围; (3)试确定函数的零点个数,并说明理由22已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 23已知抛物线C:x2=2y的焦点为F()设抛物线上任一点P(m,n)求证:以P为切点与抛物线相切的方程是mx=y+n;()若过动点M(x0,0)(x00)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明24已知函数f(x)=|2x1|+|2x+a|,g(x)=x+3(1)当a=2时,求不等式f(x)g(x)的解集;(2)设a,且当x,a时,f(x)g(x),求a的取值范围 未央区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】 P(X90)P(X110),P(90X110)1,P(100X110),1000400. 故选A.2 【答案】D【解析】解:由题意:函数f(x)=2sin(x+),f(+x)=f(x),可知函数的对称轴为x=,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值f()=2或2故选D3 【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题4 【答案】C【解析】解:复数z满足iz=2+4i,则有z=42i,故在复平面内,z对应的点的坐标是(4,2),故选C【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题5 【答案】 D【解析】解:由题意,将AED沿AE折起,使平面AED平面ABC,在平面AED内过点D作DKAE,K为垂足,由翻折的特征知,连接DK,则DKA=90,故K点的轨迹是以AD为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK=,取O为AD的中点,得到OAK是正三角形故K0A=,K0D=,其所对的弧长为=,故选:D6 【答案】C【解析】解:,因此ab=1故选:C7 【答案】A【解析】解:由sin(+)=sincos+cossin=(sin+cos)=,两边平方得:1+2sincos=,即2sincos=,则sin2=2sincos=故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题8 【答案】A【解析】解:y=2ax,于是切线的斜率k=y|x=1=2a,切线与直线2xy6=0平行有2a=2a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率9 【答案】A【解析】解:设A=x|1x2,B=x|x2,AB,故“1x2”是“x2”成立的充分不必要条件故选A【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键10【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx,再向右平移个单位得到y=cos(x),由(x)=k,得x=2k,即+2k,kZ,当k=0时,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键11【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题12【答案】C【解析】解:由题,f(x)的定义域为(0,+),f(x)=2x2,令2x20,整理得x2x20,解得x2或x1,结合函数的定义域知,f(x)0的解集为(2,+)故选:C二、填空题13【答案】i 【解析】解:复数,所以z2=i,又i2=1,所以1+z50+z100=1+i25+i50=1+i1=i;故答案为:i【点评】本题考查了虚数单位i的性质运用;注意i2=114【答案】甲 【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= (8790)2+(8990)2+(9090)2+(9190)2+(9390)2=4;乙的平均数是=(78+88+89+96+99)=90,方差是= (7890)2+(8890)2+(8990)2+(9690)2+(9990)2=53.2;,成绩较为稳定的是甲【解法二】根据茎叶图中的数据知,甲的5个数据分布在8793之间,分布相对集中些,方差小些;乙的5个数据分布在7899之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些故答案为:甲【点评】本题考查了平均数与方差的计算与应用问题,是基础题目15【答案】 【解析】解:对于,BD1面AB1C,动点P的轨迹所在曲线是直线B1C,正确;对于,满足到点A的距离为的点集是球,点P应为平面截球体所得截痕,即轨迹所在曲线为圆,正确;对于,满足条件MAP=MAC1 的点P应为以AM为轴,以AC1 为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,错误;对于,P到直线C1D1 的距离,即到点C1的距离与到直线BC的距离比为2:1,动点P的轨迹所在曲线是以C1 为焦点,以直线BC为准线的双曲线,正确;对于,如图建立空间直角坐标系,作PEBC,EFAD,PGCC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2y2=1,P点轨迹所在曲线是双曲线,错误故答案为:【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题16【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。故答案为:17【答案】 【解析】解:对于:倾斜角范围与的范围不一致,故错误;对于:(x1)sin(y2)cos=1,(0,2),可以认为是圆(x1)2+(y2)2=1的切线系,故正确;对于:存在定圆C,使得任意lL,都有直线l与圆C相交,如圆C:(x1)2+(y2)2=100,故正确;对于:任意l1L,必存在唯一l2L,使得l1l2,作图知正确;对于:任意意l1L,必存在两条l2L,使得l1l2,画图知错误故答案为:【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用18【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键三、解答题19【答案】 【解析】解:(1)由等差数列通项公式可知:an=2+(n1)2=2n,当n=1时,2b1=a1=2,b4=a8=16,3设等比数列bn的公比为q,则,4q=2,5 6(2)由(1)可知:log2bn+1=n79,cn的前n项和Sn,Sn=12【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题20【答案】 【解析】解:()由条件知,()函数f(x)的图象向右平移个单位得到函数g(x)的图象,函数g(x)在区间0,m(m(3,4)上的图象的最高点和最低点分别为M,N,最高点为,最低点为,又0,【点评】本题主要考查了由y=Asin(x+)的部分图象确定其解析式,函数y=Asin(x+)的图象变换,向量夹角公式的应用,属于基本知识的考查21【答案】(1) (2) (3)两个零点【解析】试题分析:(1) 开区间的最值在极值点取得,因此在处取极值,即 ,解得 ,需验证(2) 在区间上单调递减,转化为在区间上恒成立,再利用变量分离转化为对应函数最值:的最大值,根据分式函数求最值方法求得最大值2(3)先利用导数研究函数单调性:当时,递减,当时,递增;再考虑区间端点函数值的符号:, , ,结合零点存在定理可得零点个数试题解析:(1) 由已知,即: ,解得: 经检验 满足题意所以 4分因为,所以,所以所以,所以 10分(3)函数有两个零点因为所以 12分当时,当时,所以, 14分 , 故由零点存在定理可知: 函数在 存在一个零点,函数在 存在一个零点,所以函数有两个零点 16分考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等22【答案】 【解析】解:(),(x0),当a=2时,则在(0,+)上恒成立,当1a2时,若x(a1,1),则f(x)0,若x(0,a1)或x(1,+),则f(x)0,当a2时,若x(1,a1),则f(x)0,若x(0,1)或x(a1,+),则f(x)0,综上所述:当1a2时,函数f(x)在区间(a1,1)上单调递减,在区间(0,a1)和(1,+)上单调递增;当a=2时,函数(0,+)在(0,+)上单调递增;当a2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a1,+)上单调递增()若a=2,则,由()知函数f(x)在区间(0,+)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2a10,假设0akak+1(k1),因为函数f(x)在区间(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人珠宝买卖合同范本
- 2024年度版权质押合同:含版权内容、质押价值、质权实现
- 旅游推广合作合同实例
- 摄影棚居间服务合同样本
- 房屋销售合同模板手册
- 乐团合作合同范本大全
- 电子邮件服务租用协议
- 2024家教公司与兼职教师合作合同范本
- 企业房屋租赁合同范本
- 2024保密合同样书范文
- 四川省食品生产企业食品安全员理论考试题库(含答案)
- 机织服装生产中的质量控制体系建设考核试卷
- 病理学实验2024(临床 口腔)学习通超星期末考试答案章节答案2024年
- 2024年广西安全员C证考试题库及答案
- 期末测试卷(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024至2030年中国手机配件产业需求预测及发展趋势前瞻报告
- 2024年小学闽教版全册英语词汇表
- 课题开题汇报(省级课题)
- 清真食品安全管理制度
- 学校心理健康教育合作协议书
- 2024江苏省沿海开发集团限公司招聘23人(高频重点提升专题训练)共500题附带答案详解
评论
0/150
提交评论