




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Experiment Introduction to power systems 学生姓名:学生姓名: 学学 号:号: 专业班级:专业班级: 实验名称实验名称: 电力系统导论(双语)电力系统导论(双语) 20201414 年年 6 6 月月 5 5 日日 CONTENTS 1、EXPERIMENT 1.1 BUS ADMITTANCE MATRIX.1-6 2、EXPERIMENT 2.6 BUS IMPEDANCE MATRIX6-13 3、EXPERIMENT 3.13 GAUSS-SEIDEL AND NEWTON METHOD13-16 4、PERSENAL SUMMARY.16 0 Experiment 1 Bus Admittance Matrix 1. Objective To write a simple program in MATLAB for the algorithm of bus admittance matrix. 2. System Requirement Computer with MATLAB 6 or above installed. 3. Procedure 1.0 Launch the MATLAB program. 2.0 Go to FILE NEW M-file. 3.0 Write a function Y = The_Node_Admittance_Matrix(TopoStructureAndBranchPara) for the formation of the bus admittance matrix. 1 4.0 TopoStructureAndBranchPara is the transmission line, cable and transformer input data and contains five columns parameters. The first two columns are the line bus numbers and the remaining columns contain the line resistance and reactance in per-unit and transformer tap ratio or capacitor of transmission line. 5.0 The function should return the bus admittance matrix. 4. Exercises Use the written function, Y = The_Node_Admittance_Matrix (TopoStructureAndBranchPara) to obtain the Ybus of the following power system network: Q1. You are required to write the Ybus topological structure and parameter into a text file. (Hint: use the matlab text compiler to write down the table 1 data, using the comma to separate the parameters, and save it use the name of 4_Power_System_Data.dbf) Q2. You are required to write out the program flow figure of forming a nodal admittance matrix. Hint. You are required to compile a program to form the Ybus Matrix, the following program is a reference program to you. Figure : One-line diagram of power system For example ,from the textbook “power system analysis” No.2 edition 3 on page 6162 NodalAdmittanceMatrix = 1.0421 - 8.2429i -0.5882 + 2.3529i 0 + 3.6667i -0.4539 + 1.8911i -0.5882 + 2.3529i 1.0690 - 4.7274i 0 0 Table 1:Transformer and transmissssion Line data From Bus#To Bus#R(p.u)X(p.u)B(p.u)or ratio KOthers 120.10.4j0.01528 1300.31.1 140.120.5j0.01920 240.080.40J0.01413 2 0 + 3.6667i 0 0 - 3.3333i 0 -0.4539 + 1.8911i 0 0 0.9346 - 4.2616i 5.The flow chart Figure : The flow chart of Forming Nodal Admittance Matrix The program is: %function OutPut=The_Node_Admittance_Matrix(handles) %is a subroutine of PowerSystemCalculation function OutPut=The_Node_Admittance_Matrix(handles) %the following program is open a data file and get the Number of % Node and Branch data to form a nodal addmittance matrix %the following code is open a file and read the data of power system network fname,pname = uigetfile(*.dbf,Select the network parametre data-file); TopoStructureAndBranchPara= csvread(fname); NumberOfBranch,NumberOfPara=size(TopoStructureAndBranchPara); Temporary1=max(TopoStructureAndBranchPara(:,1); Temporary2=max(TopoStructureAndBranchPara(:,2); if Temporary1 Temporary2 NumberOfNode=Temporary1; else NumberOfNode=Temporary2; end %The following program is to form the Nodal Admittance Matrix % and the Topologic structure and Branch Parametres are arranged % I,J,R,X,C/K, and pay attention to the inpedence of transformer is in the % side of Node J and the ratio of transformer 1:K is in the side of Node I for CircleNumber1=1:NumberOfBranch for CircleNumber2=1:NumberOfBranch NodalAdmittanceMatrix(CircleNumber1,CircleNumber2)=0; end end for CircleNumber=1:NumberOfBranch if TopoStructureAndBranchPara(CircleNumber,5) 0.85 NodalAdmittanceMatrix(TopoStructureAndBranchPara(TopoStructureAndBranchPara(CircleNumber, 1),TopoStructureAndBranchPara(CircleNumber,1)=. 3 NodalAdmittanceMatrix(TopoStructureAndBranchPara(TopoStructureAndBranchPara(CircleNumber, 1),TopoStructureAndBranchPara(CircleNumber,1)+. TopoStructureAndBranchPara(CircleNumber,5)2/. (TopoStructureAndBranchPara(CircleNumber,3)+. j*TopoStructureAndBranchPara(CircleNumber,4) ; NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPa ra(CircleNumber,2)=. NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPa ra(CircleNumber,2)+. 1/(TopoStructureAndBranchPara(CircleNumber,3)+j*TopoStructureAndBranchPara(CircleNumber,4 ); NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPa ra(CircleNumber,2)=. NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPa ra(CircleNumber,2). -TopoStructureAndBranchPara(CircleNumber,5)/. (TopoStructureAndBranchPara(CircleNumber,3)+j*TopoStructureAndBranchPara(CircleNumber,4) ); NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPa ra(CircleNumber,1)=. NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPa ra(CircleNumber,2); else NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPa ra(CircleNumber,1)=. NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPa ra(CircleNumber,1)+. +1/(TopoStructureAndBranchPara(CircleNumber,3)+. Experiment 2 Bus Impedance Matrix 4 j*TopoStructureAndBranchPara(CircleNumber,4)+j*TopoStructureAndBranchPara(CircleNumber,5) ; NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPa ra(CircleNumber,2)=. NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPa ra(CircleNumber,2)+. +1/(TopoStructureAndBranchPara(CircleNumber,3)+. j*TopoStructureAndBranchPara(CircleNumber,4)+j*TopoStructureAndBranchPara(CircleNumber,5) NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPa ra( CircleNumber,2)=. NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPa ra( CircleNumber,2). -1/(TopoStructureAndBranchPara(CircleNumber,3)+. j*TopoStructureAndBranchPara(CircleNumber,4); NodalAdmittanceMatrix(TopoStructureAndBranchPara( CircleNumber,2),TopoStructureAndBranchPara(CircleNumber,1)=. NodalAdmittanceMatrix(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPa ra( CircleNumber,2); end end The result is: NodalAdmittanceMatrix = 1.0421 - 8.2429i -0.5882 + 2.3529i 0 + 3.6667i -0.4539 + 1.8911i -0.5882 + 2.3529i 1.0690 - 4.7274i 0 0 0 + 3.6667i 0 0 - 3.3333i 0 -0.4539 + 1.8911i 0 0 0.9346 - 4.2616i 5 Experiment 2 Power Grid Bus Impedance Matrix 1. Objective To write a simple program in MATLAB for the algorithm of bus impedance matrix. 2. System Requirement Computer with MATLAB 6 or above installed. 3. Procedure 1.0 Launch the MATLAB program. 2.0 Go to FILE NEW M-file. Experiment 2 Bus Impedance Matrix 6 3.0 Write a function Z = znbus (z) for the formation of the bus impedance matrix. 4.0 z is the line input and contains three columns. The first two columns are the line bus numbers and the remaining columns contain the line resistance in per-unit. 5.0 The function should return the bus impedance matrix. 4. Exercises Use the written function, Z = znbus(z) to obtain the Ybus of the following power system network: Example 1 Figure 3: One-line diagram of power system For example ,from the textbook “power system analysis” No.2 edition 3 on page 6162 Table 1:Transformer and transmissssion Line data From Bus#To Bus#R(p.u)X(p.u)B(p.u)or ratio KOthers 120.10.4j0.01528 1300.31.1 7 140.120.5j0.01920 240.080.40J0.01413 Q2. You are required to write the Zbus into a text file. (Hint: use the matlab text compiler) Example 2 For the system shown, form Zbus matrix using the building algorithm Solution A line list Experiment 2 Bus Impedance Matrix 8 Apply Kron reduction to eliminate the last row Hint. You are required to compile a program to form the Zbus Matrix.the following program is a reference program to you. The program is: %function OutPut=The_Node_impedance_Matrix(handles) %is a subroutine of PowerSystemCalculation function OutPut=The_Node_impedance_Matrix(handles) %the following program is open a data file and get the Number of % Node and Branch data to form a nodal impedance matrix %the following code is open a file and read the data of power system network fname,pname = uigetfile(*.dbf,Select the network parametre data-file); Topo_Structure_And_Branch_Para= csvread(fname); %get the electric power system the number of branch and the parametre of % elements 9 NumberOfBranch,NumberOfPara=size(Topo_Structure_And_Branch_Para); %Temporary1-temporary variable 1 %Temporary2-temporary variable 2 Temporary1=max(Topo_Structure_And_Branch_Para(:,1); Temporary2=max(Topo_Structure_And_Branch_Para(:,2); if Temporary1 Temporary2 NumberOfNode=Temporary1; else NumberOfNode=Temporary2; end % The following program is to form the Nodal impedance Matrix % and the Topologic structure and Branch Parametres are arranged % I,J,R,X,C/K, and pay attention to the inpedence of transformer is in the % side of Node J and the ratio of transformer 1:K is in the side of Node % % set the initial value of Nodal Admittance Matrix to zero for CircleNumber1=1:NumberOfNode for CircleNumber2=1:NumberOfNode Nodal_impedance_Matrix(CircleNumber1,CircleNumber2)=0; end end for CircleNumber=1:NumberOfBranch if Topo_Structure_And_Branch_Para(CircleNumber,5) 0.85 Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(Topo_Structure_And_Branch_Para(Cir cleNumber,1),Topo_Structure_And_Branch_Para(CircleNumber,1)=. Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(Topo_Structure_And_Branch_Para(Cir cleNumber,1),Topo_Structure_And_Branch_Para(CircleNumber,1)+Topo_Structure_And_Branch_ Para(CircleNumber,5)2/(Topo_Structure_And_Branch_Para(CircleNumber,3)+. j*Topo_Structure_And_Branch_Para(CircleNumber,4) ; Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,2),Topo_Structure_And _Branch_Para(CircleNumber,2)=. Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,2),Topo_Structure_And _Branch_Para(CircleNumber,2)+. 1/(Topo_Structure_And_Branch_Para(CircleNumber,3)+j*Topo_Structure_And_Branch_Para(Circle Number,4); Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,1),Topo_Structure_And _Branch_Para(CircleNumber,2)=. Experiment 2 Bus Impedance Matrix 10 Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,1),Topo_Structure_And _Branch_Para(CircleNumber,2). -Topo_Structure_And_Branch_Para(CircleNumber,5)/. (Topo_Structure_And_Branch_Para(CircleNumber,3)+j*Topo_Structure_And_Branch_Para(CircleN umber,4); Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,2),Topo_Structure_And _Branch_Para(CircleNumber,1)=. Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,1),Topo_Structure_And _Branch_Para(CircleNumber,2); else Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,1),Topo_Structure_And _Branch_Para(CircleNumber,1)=. Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,1),Topo_Structure_And _Branch_Para(CircleNumber,1)+. +1/(Topo_Structure_And_Branch_Para(CircleNumber,3)+. j*Topo_Structure_And_Branch_Para(CircleNumber,4)+j*Topo_Structure_And_Branch_Para(Circle Number,5); Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,2),Topo_Structure_And _Branch_Para(CircleNumber,2)=. Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,2),Topo_Structure_And _Branch_Para(CircleNumber,2)+. +1/(Topo_Structure_And_Branch_Para(CircleNumber,3)+. j*Topo_Structure_And_Branch_Para(CircleNumber,4)+j*Topo_Structure_And_Branch_Para(Circle Number,5) Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,1),Topo_Structure_And _Branch_Para( CircleNumber,2)=. Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,1),Topo_Structure_And _Branch_Para( CircleNumber,2). -1/(Topo_Structure_And_Branch_Para(CircleNumber,3)+. 11 j*Topo_Structure_And_Branch_Para(CircleNumber,4); Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para( CircleNumber,2),Topo_Structure_And_Branch_Para(CircleNumber,1)=. Nodal_impedance_Matrix(Topo_Structure_And_Branch_Para(CircleNumber,1),Topo_Structure_And _Branch_Para( CircleNumber,2); end end format short Nodal_impedance_Matrix*inv(Nodal_impedance_Matrix) 运行结果运行结果: Nodal_impedance_Matrix = 1.0421e+000 -8.2429e+000i -5.8824e-001 +2.3529e+000i 0 +3.6667e+000i 0 -5.8824e-001 +2.3529e+000i 5.8824e-001 -2.3377e+000i 0 0 0 +3.6667e+000i 0 0 -3.3333e+000i 0 0 0 0 4.5386e-001 -1.8719e+000i Nodal_impedance_Matrix = 1.0421e+000 -8.2429e+000i -5.8824e-001 +2.3529e+000i 0 +3.6667e+000i - 4.5386e-001 +1.8911e+000i -5.8824e-001 +2.3529e+000i 1.0690e+000 -4.7274e+000i 0 0 0 +3.6667e+000i 0 0 -3.3333e+000i 0 -4.5386e-001 +1.8911e+000i 0 0 9.3463e-001 -4.2616e+000i ans = 1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i 1.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 - 0.0000i Experiment 2 Bus Impedance Matrix 12 -0.0000 - 0.0000i -0.0000 - 0.0000i 1.0000 - 0.0000i -0.0000 0 - 0.0000i 0 + 0.0000i 0.0000 - 0.0000i 1.0000 + 0.0000i 以上就是对阻抗矩阵的验证,其和其逆相乘为单位对角矩阵 ExperimentExperiment 3 3 Gauss-Seidel Method 1. Objective To write a simple program in MATLAB for the algorithm to solution of nonlinear algebraic equations; Known as the method of successive displacements. 2. Discussion The most common methods for solving nonlinear algebraic equations are Gauss-Seidel, Newtow-Rahpson, and quasi-Newton-Raphson methods. We start with one dimensional equations and then generalize to n-dimensional equations. 3. Mathmatics model Consider the nonlinear equation .The equation is broken into two parts thus:. We 0)(xf)(xgx assume is an initial “guess“ of the solution, then “refine“ the solution using: )0( x )( )0()1( xgx This process is repeated thus )( )1()2( xgx and on the iteration we have: th n)( )1()( nn xgx . If this process is convergent, then the successive solutions approach a value which is declared as the solution. Thus if at some step we have: 1k 13 )()1(kk xx where e is the desired “accuracy“, then we claim the solution has been found to the accuracy specified. 4. System Requirement Computer with MATLAB 6 or above installed. 5. Procedure 1.0 Launch the MATLAB program. 2.0 Go to FILE NEW M-file. 3.0 Write a function program of Gauss Seidel Method. 6. Exercises Example: Using the Gauss-Seidel method to obtain the roots of the equation: 0496)( 23 xxxxf First the equation is expressed in a different form thus )(46 9 1 23 xgxxx Experiment 2 Bus Impedance Matrix 14 And the iteration can proceed. Take a good look at the shape of the iterations! Below is the program showing the process graphically (later showing how to do it iteratively). 7.The flow chart of Gauss Seidel method (Omitted) 8.Reference Program and result. 程序是:程序是: clear all clc x0=0.5; n=0; while (abs(x03-6*x02+9*x0-4)0.00001) x0=-(x03-6*x02-4)/9; y=x0; n=n+1; end 结果是结果是:n=1627 y=x0=0.99818 clear all clc x0=2.5; n=0; while (abs(x03-6*x02+9*x0-4)0.00001) x0=-(x03-6*x02-4)/9; y=x0; n=n+1; end 结果是结果是:n=7 y=x0=4 仿照高斯-赛德尔法,我们可以写
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 系统分析师考试项目管理考察试题及答案
- 2024年系统分析师考试中的实践技能提升试题及答案
- 秘书证考试时间管理策略试题及答案
- 2025餐厅经营合同范本
- 2025中外合作企业股权转让合同
- 混合复习统计学试题及答案解析
- 2025钢筋混凝土厂房建设合同范本
- 江苏科技大学《综合材料视觉表现》2023-2024学年第一学期期末试卷
- 西北师范大学《地理语言学》2023-2024学年第一学期期末试卷
- 四川省棠湖中学2025届高三下学期第一次质量检测试题历史试题含解析
- 唐这个姓氏的研究报告
- 二年级下册三位数加减混合计算练习200题及答案
- 证劵公司招聘笔试题及答案
- 施工现场安全围挡
- 拐杖及助行器的使用方法课件
- 2024年黄芩素行业分析报告及未来发展趋势
- 风湿免疫科学教学设计案例
- 金属风管预制安装施工技术
- 2023年数学竞赛AMC8真题D卷(含答案)
- 宴席设计实务(烹饪专业高职)全套教学课件
- 牙刷的营销方案和策略
评论
0/150
提交评论