




已阅读5页,还剩89页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 线性代数问题求解 矩阵 线性方程组的直接解法 线性方程组的迭代法 线性方程组的符号解法 稀疏矩阵技术 特征值与特征向量 4.1 矩阵 4.1.1特殊矩阵的输入 数值矩阵的输入 零矩阵、幺矩阵及单位矩阵 生成nn方阵: A=zeros(n), B=ones(n), C=eye(n) 生成mn矩阵: A=zeros(m,n), B=ones(m,n), C=eye(m,n) 生成和矩阵B同样位数的矩阵: A=zeros(size(B) 随机元素矩阵 若矩阵随机元素满足0,1区间上的均匀分布 生成nm阶标准均匀分布为随机数矩阵: A=rand(n,m) 生成nn阶标准均匀分布为随机数方阵: A=rand(n) 对角元素矩阵 已知向量生成对角矩阵: A=diag(V) 已知矩阵提取对角元素列向量: Vdiag(A) 生成主对角线上第k条对角线为V的矩阵: A=diag(V,k) 例:diag( )函数的不同调用格式 C=1 2 3; V=diag(C) % 生成对角矩阵 V = 1 0 0 0 2 0 0 0 3 V1=diag(V) % 将列向量通过转置变换成行向量 V1 = 1 2 3 C=1 2 3; V=diag(C,2) % 主对角线上第 k条对角线为C的矩阵 V = 0 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 生成三对角矩阵: V=diag(1 2 3 4)+diag(2 3 4,1)+diag(5 4 3,-1) V = 1 2 0 0 5 2 3 0 0 4 3 4 0 0 3 4 Hilbert矩阵及逆Hilbert矩阵 生成n阶的Hilbert矩阵: A=hilb(n) 求取逆Hilbert矩阵: B=invhilb(n) Hankel(汉克 ) 矩阵 其中:第一列的各个元素定义为C向量,最后一行各 个元素定义为R。H为对称阵。 H1=hankel(C) 由 Hankel 矩阵反对角线上元素相等得出一下三角 阵均为零的Hankel 矩阵 Vandermonde(范德蒙)矩阵 伴随矩阵 其中:P(s)为首项系数为一的多向式。 符号矩阵的输入 数值矩阵A转换成符号矩阵: B=sym(A) 例: A=hilb(3) A = 1.0000 0.5000 0.3333 0.5000 0.3333 0.2500 0.3333 0.2500 0.2000 B=sym(A) B = 1, 1/2, 1/3 1/2, 1/3, 1/4 1/3, 1/4, 1/5 4.1.2 矩阵基本概念与性质 行列式 格式 :d=det(A) 例:求行列式 A=16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1; det(A) ans = 0 例: tic, A=sym(hilb(20); det(A), toc ans = 1/23774547167685345090916442434276164401754 1983775348649303318533123441975931064458 5187585766816573773440565759867265558971 7656384197107933033865823241498112410235 5448916615471780963525779783680000000000 0000000000000000000000000 elapsed_time = 2.3140 高阶的Hilbert矩阵是接近奇异的矩阵。 矩阵的迹 格式: t=trace(A) 矩阵的秩 格式:r=rank(A) 用默认的精度求数值秩 r=rank(A, ) 给定精度下求数值秩 矩阵的秩也表示该矩阵中行列式不等于0的子式的最大阶 次。可证行秩和列秩(线性无关的)应相等。 例 A=16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1; rank(A) ans = 3 该矩阵的秩为3,小于矩阵的阶次,故为非满秩矩阵。 例 H=hilb(20); rank(H) 数值方法 ans = 13 H=sym(hilb(20); rank(H) % 解析方法,原矩阵为非奇异矩阵 ans = 20 矩阵范数 矩阵的范数定义: 格式: N=norm(A) 求解默认的2范数 N=norm(A,选项) 选项可为1,2,inf等 例:求一向量、矩阵的范数 a=16 2 3 13; norm(a), norm(a,2), norm(a,1), norm(a,Inf) ans = 2.092844953645635e+001 2.092844953645635e+001 3.400000000000000e+001 1.600000000000000e+001 A=16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1; norm(A), norm(A,2), norm(A,1), norm(A,Inf) ans = 34 34 34 34 符号运算工具箱未提供norm( )函数,需先用double( ) 函数转换成双精度数值矩阵,再调用norm( )函数。 特征多项式 格式: C=poly(A) 例: A=16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1; poly(A) 直接求取 ans = 1.000000000000000e+000 -3.399999999999999e+001 -7.999999999999986e+001 2.719999999999999e+003 -2.819840539024018e-012 A=sym(A); poly(A) 运用符号工具箱 ans = x4-34*x3-80*x2+2720*x 矩阵多项式的求解 符号多项式与数值多项式的转换 格式: f=poly2sym(P) 或 f=poly2sym(P,x) 格式: P=sym2poly(f) 例: P=1 2 3 4 5 6; % 先由系数按降幂顺序排列表示多 项式 f=poly2sym(P,v) % 以 v 为算子表示多项式 f = v5+2*v4+3*v3+4*v2+5*v+6 P=sym2poly(f) P = 1 2 3 4 5 6 矩阵的逆矩阵 格式: C=inv(A) 例: format long; H=hilb(4); H1=inv(H) H1 = 1.0e+003 * 0.01600000000000 -0.11999999999999 0.23999999999998 -0.13999999999999 -0.11999999999999 1.19999999999990 -2.69999999999976 1.67999999999984 0.23999999999998 -2.69999999999976 6.47999999999940 -4.19999999999961 -0.13999999999999 1.67999999999984 -4.19999999999961 2.79999999999974 检验: H*H1 ans = 1.00000000000001 0.00000000000023 -0.00000000000045 0.00000000000023 0.00000000000001 1.00000000000011 -0.00000000000011 0.00000000000011 0.00000000000001 0 1.00000000000011 0 0.00000000000000 0.00000000000011 -0.00000000000011 1.00000000000011 计算误差范数: norm(H*inv(H)-eye(size(H) ans = 6.235798190375727e-013 H2=invhilb(4); norm(H*H2-eye(size(H) ans = 5.684341886080802e-014 H=hilb(10); H1=inv(H); norm(H*H1-eye(size(H) ans = 0.00264500826202 H2=invhilb(10); norm(H*H2-eye(size(H) ans = 1.612897415528547e-005 H=hilb(13); H1=inv(H); norm(H*H1-eye(size(H) Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.339949e-018. ans = 53.23696008570294 H2=invhilb(13); norm(H*H2-eye(size(H) ans = 11.37062973181391 对接近于奇异矩阵,高阶一般不建议用inv( ),可用符号工具箱。 H=sym(hilb(7); inv(H) ans = 49, -1176, 8820, -29400, 48510, -38808, 12012 -1176, 37632, -317520, 1128960, -1940400, 1596672, -504504 8820, -317520, 2857680, -10584000, 18711000, -15717240, 5045040 -29400, 1128960, -10584000, 40320000, -72765000, 62092800, -20180160 48510, -1940400, 18711000, -72765000, 133402500, -115259760, 37837800 -38808, 1596672, -15717240, 62092800, -115259760, 100590336, -33297264 12012, -504504, 5045040, -20180160, 37837800, -33297264, 11099088 H=sym(hilb(30); norm(double(H*inv(H)-eye(size(H) ans = 0 例:奇异阵求逆 A=16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1; format long; B = inv(A) Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.306145e-017. B = 1.0e+014 * 0.93824992236885 2.81474976710656 -2.81474976710656 -0.93824992236885 2.81474976710656 8.44424930131968 -8.44424930131968 -2.81474976710656 -2.81474976710656 -8.44424930131968 8.44424930131968 2.81474976710656 -0.93824992236885 -2.81474976710656 2.81474976710656 0.93824992236885 norm(A*B-eye(size(A) 检验 ans = 1.64081513306419 A=sym(A); inv(A) 奇异矩阵不存在一个相应的逆矩阵,用符号工具 箱的函数也不行 ? Error using = sym/inv Error, (in inverse) singular matrix 同样适用于含有变量的矩阵求逆。 例: syms a1 a2 a3 a4; C=a1 a2;a3 a4; inv(C) ans = -a4/(-a1*a4+a2*a3), a2/(-a1*a4+a2*a3) a3/(-a1*a4+a2*a3), -a1/(-a1*a4+a2*a3) 矩阵的相似变换与正交矩阵 其中:A为一方阵,B矩阵非奇异。 相似变换后,X矩阵的秩、迹、行列式与特征值等 均不发生变化,其值与A矩阵完全一致。 对于一类特殊的相似变换满足如下条件,称为正 交基矩阵。 例: A=5,9,8,3; 0,3,2,4; 2,3,5,9; 3,4,5,8; Q=orth(A) Q = -0.6197 0.7738 -0.0262 -0.1286 -0.2548 -0.1551 0.9490 0.1017 -0.5198 -0.5298 -0.1563 -0.6517 -0.5300 -0.3106 -0.2725 0.7406 norm(Q*Q-eye(4) ans = 4.6395e-016 norm(Q*Q-eye(4) ans = 4.9270e-016 例: A=16,2,3,13; 5,11,10,8; 9,7,6,12; 4,14,15,1; Q=orth(A) A为奇异矩阵,故得出的Q为长方形矩阵 Q = -0.5000 0.6708 0.5000 -0.5000 -0.2236 -0.5000 -0.5000 0.2236 -0.5000 -0.5000 -0.6708 0.5000 norm(Q*Q-eye(3) ans = 1.0140e-015 4.2 线性方程组直接解法 4.2.1线性方程组直接求解矩阵除法 关于线性方程组的直接解法,如Gauss消去法 、选主元消去法、平方根法、追赶法等等, 在MATLAB中,只需用“”或“”就解决问题 。它内部实际包含着许许多多的自适应算法 ,如对超定方程用最小二乘法,对欠定方程 时它将给出范数最小的一个解,解三对角阵 方程组时用追赶法等等。 格式: x=Ab 例:解方程组 A=.4096,.1234,.3678,.2943;.2246,.3872,.4015,.1129; .3645,.1920,.3781,.0643;.1784,.4002,.2786,.3927; b=0.4043 0.1550 0.4240 -0.2557; x=Ab; x ans = -0.1819 -1.6630 2.2172 -0.4467 4.2.2线性方程组直接求解判定求解 例: A=1 2 3 4; 4 3 2 1; 1 3 2 4; 4 1 3 2; B=5 1; 4 2; 3 3; 2 4; C=A B; rank(A), rank(C) ans = 4 ans = 4 x=inv(A)*B x = -1.8000 2.4000 1.8667 -1.2667 3.8667 -3.2667 -2.1333 2.7333 检验 norm(A*x-B) ans = 7.4738e-015 精确解 x1=inv(sym(A)*B x1 = -9/5, 12/5 28/15, -19/15 58/15, -49/15 -32/15, 41/15 检验 norm(double(A*x1-B) ans = 0 原方程组对应的齐次方程组的解 求取A矩阵的化零矩阵: 格式: Z=null(A) 求取A矩阵的化零矩阵的规范形式: 格式: Z=null(A, r ) 例: 判断可解性 A=1 2 3 4; 2 2 1 1; 2 4 6 8; 4 4 2 2; B=1;3;2;6; C=A B; rank(A), rank(C) ans = 2 2 Z=null(A,r) % 解出规范化的化零空间 Z = 2.0000 3.0000 -2.5000 -3.5000 1.0000 0 0 1.0000 x0=pinv(A)*B % 得出一个特解 x0 = 0.9542 0.7328 %全部解 -0.0763 -0.2977 验证得出的解 a1=randn(1); a2=rand(1); % 取不同分布的随 机数 x=a1*Z(:,1)+a2*Z(:,2)+x0; norm(A*x-B) ans = 4.4409e-015 解析解 Z=null(sym(A) Z = 2, 3 -5/2, -7/2 1, 0 0, 1 x0=sym(pinv(A)*B) x0 = 125/131 96/131 -10/131 -39/131 验证得出的解 a1=randn(1); a2=rand(1); % 取不同分布的随机数 x=a1*Z(:,1)+a2*Z(:,2)+x0; norm(double(A*x-B) ans = 0 通解 syms a1 a2; x=a1*Z(:,1)+a2*Z(:,2)+x0 x = 2*a1+3*a2+125/131 -5/2*a1-7/2*a2+96/131 a1-10/131 a2-39/131 摩尔彭罗斯广义逆求解出的方程最小二乘解 不满足原始代数方程。 4.2.3 线性方程组的直接求解分析 LU分解 格式 l,u,p=lu(A) L是一个单位下三角矩阵,u是一个上三角矩 阵, p是代表选主元的置换矩阵。 故:Ax=y = PAx=Py = LUx=Py = PA=LU l,u=lu(A) 其中l等于P-1 L,u等于U,所以(P-1 L)U=A 例:对A进行LU分解 A=1 2 3; 2 4 1; 4 6 7; l,u,p=lu(A) l = 1.0000 0 0 0.5000 1.0000 0 0.2500 0.5000 1.0000 u = 4.0000 6.0000 7.0000 0 1.0000 -2.5000 0 0 2.5000 p = 0 0 1 0 1 0 1 0 0 l,u=lu(A) lP-1 L l = 0.2500 0.5000 1.0000 0.5000 1.0000 0 1.0000 0 0 u = 4.0000 6.0000 7.0000 0 1.0000 -2.5000 0 0 2.5000 QR分解 将矩阵A分解成一个正交矩阵与一个上三角 矩阵的乘积。 求得正交矩阵Q和上三角阵R,Q和R满足 A=QR。 格式: Q,R = qr(A) 例: A = 1 2 3;4 5 6; 7 8 9; 10 11 12; Q,R = qr(A) Q = -0.0776 -0.8331 0.5456 -0.0478 -0.3105 -0.4512 -0.6919 0.4704 -0.5433 -0.0694 -0.2531 -0.7975 -0.7762 0.3124 0.3994 0.3748 R = -12.8841 -14.5916 -16.2992 0 -1.0413 -2.0826 0 0 -0.0000 0 0 0 Cholesky(乔里斯基 )分解 若矩阵A为 n阶对称正定阵,则存在唯 一的对角元素为正的三角阵D,使得 格式: D=chol(A) 例:进行Cholesky分解。 A=16 4 8; 4 5 -4; 8 -4 22; D=chol(A) D = 4 1 2 0 2 -3 0 0 3 利用矩阵的LU、QR和cholesky分解求方程组的解 (1)LU分解: A*X=b 变成 L*U*X=b 所以 X=U(Lb) 这样可以大大提高运算速度。 例:求方程组 的一个特解。 解: A=4 2 -1;3 -1 2;11 3 0; B=2 10 8; D=det(A) D = 0 L,U=lu(A) L = 0.3636 -0.5000 1.0000 0.2727 1.0000 0 1.0000 0 0 U = 11.0000 3.0000 0 0 -1.8182 2.0000 0 0 0.0000 X=U(LB) Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.018587e- 017. X = 1.0e+016 * % 结果中的警告是由于系数行列式为 零产生的。 -0.4053 % 可以通过A*X验证其 正确性。 1.4862 1.3511 A*X ans = 0 8 8 (2)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A 分解成上三角矩阵和其转置的乘积, 方程 A*X=b 变成 R*R*X=b 所以 X=R(Rb) (3)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q 为正交矩阵,R为上三角矩阵的初等变换形式,即: A=QR 方程 A*X=b 变形成 QRX=b 所以 X=R(Qb) 这三种分解,在求解大型方程组时很有用。其优点 是运算速度快、可以节省磁盘空间、节省内存。 三个变换 在线性方程组的迭代求解中,要用到系数 矩阵A的上三角矩阵、对角阵和下三角矩阵。 此三个变换在MATLAB中可由以下函数实现 。 上三角变换: 格式 triu(A,1) 对角变换: 格式 diag(A) 下三角变换: 格式 tril(A,-1) 例:对此矩阵做三种变换。 A=1 2 -2;1 1 1;2 2 1; triu(A,1) ans = 0 2 -2 0 0 1 0 0 0 tril(A,-1) ans = 0 0 0 1 0 0 2 2 0 b=diag(A); b ans = 1 1 1 4.3 迭代解法的几种形式 5.3.1 Jacobi迭代法 方程组 Ax=b A可写成 A=D-L-U 其中:D=diaga11,a22,ann, -L、-U分别为A的 严格下、上三角部分(不包括对角线元素). 由 Ax=b x=Bx+f 由此可构造迭代法: x(k+1)=Bx(k)+f 其中:B=D-1(L+U)=I-D-1A, f=D-1b. function y=jacobi(a,b,x0) D=diag(diag(a); U=-triu(a,1); L=-tril(a,-1); B=D(L+U); f=Db; y=B*x0+f; n=1; while norm(y-x0)=1.0e-6 x0=y; y=B*x0+f; n=n+1; end n 例:用Jacobi方法求解, 设x(0)=0,精度为10-6。 a=10 -1 0; -1 10 -2; 0 -2 10; b=9; 7; 6; jacobi(a,b,0;0;0) n = 11 ans = 0.9958 0.9579 0.7916 4.3.2 Gauss-Seidel迭代法 由原方程构造迭代方程 x(k+1)=G x(k)+f 其中:G=(D-L)-1 U, f=(D-L)-1 b D=diaga11,a22,ann, -L、-U分别为A的严格下、上三角部 分(不包括对角线元素). function y=seidel(a,b,x0) D=diag(diag(a);U=-triu(a,1);L=-tril(a,-1); G=(D-L)U ;f=(D-L)b; y=G*x0+f; n=1; while norm(y-x0)=1.0e-6 x0=y; y=G*x0+f; n=n+1; end n 例:对上例用Gauss-Seidel迭代法求解 a=10 -1 0; -1 10 -2; 0 -2 10; b=9; 7; 6; seidel(a,b,0;0;0) n = 7 ans = 0.9958 0.9579 0.7916 例:分别用Jacobi和G-S 法迭代求解,看是否收敛。 a=1 2 -2; 1 1 1; 2 2 1; b=9; 7; 6; jacobi(a,b,0;0;0) n = 4 ans = -27 26 8 seidel(a,b,0;0;0) n = 1011 ans = 1.0e+305 * -Inf Inf -1.7556 4.3.3 SOR迭代法 在很多情况下,J法和G-S法收敛较 慢,所以考虑对G-S法进行改进。于是引 入一种新的迭代法逐次超松弛迭代法 (Succesise Over-Relaxation),记为SQR法 。 迭代公式为: X(k+1)= (D-wL)-1(1-w)D+wU)x(k) + w(D-wL)-1 b 其中:w最佳值在1, 2)之间,不易计 算得到,因此 w通常有经验给出。 function y=sor(a,b,w,x0) D=diag(diag(a);U=-triu(a,1);L=-tril(a,-1); M=(D-w*L)(1-w)*D+w*U); f=(D-w*L)b*w; y=M*x0+f; n=1; while norm(y-x0)=1.0e-6 x0=y; y=M*x0+f; n=n+1; end n 例:上例中,当w=1.103时,用SOR法求解 原方程。 a=10 -1 0; -1 10 -2; 0 -2 10; b=9; 7; 6; sor(a,b,1.103,0;0;0) n = 8 ans = 0.9958 0.9579 0.7916 4.3.4 两步迭代法 当线性方程系数矩阵为对称正定时 ,可用一种特殊的迭代法来解决,其迭 代公式为: (D-L)x(k+1/2) =U x(k) +b (D-U)x(k+1)=Lx(k+1/2) +b = x(k+1/2) =(D-L)-1 U x(k) + (D-L)-1 b x(k+1)= (D-U)-1 Lx(k+1/2) + (D-U)-1 b function y=twostp(a,b,x0) D=diag(diag(a);U=-triu(a,1);L=-tril(a,-1); G1=(D-L)U; f1=(D-L)b; G2=(D-U)L; f1=(D-U)b; y=G1*x0+f1; y=G2*y+f2; n=1; while norm(y-x0)=1.0e-6 x0=y; y=G1*x0+f1; y=G2*y+f2; n=n+1; end n 例:求解方程组 a=10 -1 2 0; -1 11 -1 3; 2 -1 10 3; 0 3 -1 8; b=6; 25; -11; 15; twostp(a, b, 0; 0; 0; 0) n = 7 ans = 1.0791 1.9824 -1.4044 0.9560 4.4 线性方程组的符号解法 在MATLAB的Symbolic Toolbox中提供了 线性方程的符号求解函数,如 linsolve(A,b) 等同于 X = sym(A)sym(b). solve(eqn1,eqn2,.,eqnN,var1,var2,.,varN ) 例: A=sym(10,-1,0;-1,10,-2;0,-2,10); b=(9; 7; 6); linsolve(A,b) ans = 473/475 91/95 376/475 vpa(ans) ans = .99578947368421052631578947368421 .95789473684210526315789473684211 .79157894736842105263157894736842 例: x,y = solve(x2 + x*y + y = 3,x2 - 4*x + 3 = 0,x,y) x = 1 3 y = 1 -3/2 4.5 稀疏矩阵技术 稀疏矩阵的建立: 格式 S=sparse(i,j,s,m,n) 生成一mxn阶的稀疏矩阵,以向量i和j为坐标的位置上对应 元素值为s。 例: n=5; a1=sparse(1:n, 1:n, 4*ones(1,n), n, n) a1 = (1,1) 4 (2,2) 4 (3,3) 4 (4,4) 4 (5,5) 4 例: a2=sparse(2:n, 1:n-1,ones(1,n-1),n,n) a2 = (2,1) 1 (3,2) 1 (4,3) 1 (5,4) 1 full(a2) ans = 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 例:n=5,建立主对角线上元素为4,两条次对角 线为1的三对角阵。 n=5; a1=sparse(1:n,1:n,4*ones(1,n),n,n); a2=sparse(2:n,1:n-1,ones(1,n-1),n,n); a=a1+a2+a2 a = (1,1) 4 (2,1) 1 (1,2) 1 (2,2) 4 (3,2) 1 (2,3) 1 (3,3) 4 (4,3) 1 (3,4) 1 (4,4) 4 (5,4) 1 (4,5) 1 (5,5) 4 full(a) ans = 4 1 0 0 0 1 4 1 0 0 0 1 4 1 0 0 0 1 4 1 0 0 0 1 4 格式 A=spdiags(B,d,m,n) 生成一mxn阶的稀疏矩阵,使得B的列放在由d指定的 位置。 例: n=5 b=spdiags(ones(n,1),4*ones(n,1),ones(n,1), -1,0,1,n,n); full(b) ans = 4 1 0 0 0 1 4 1 0 0 0 1 4 1 0 0 0 1 4 1 0 0 0 1 4 格式: spconvert(dd) 对于无规律的稀疏矩阵,可使用此命令 由外部数据转化为稀疏矩阵。 调用形式为:先用load函数加载以行表示对 应位置和元素值的.dat文本文件,再用此命 令转化为稀疏矩阵。 例:无规律稀疏矩阵的建立。 首先编制文本文件sp.dat如下: 5 1 5.00 3 5 8.00 4 4 2.00 5 5 0 load sp.dat spconvert(sp) ans = (5,1) 5 (4,4) 2 (3,5) 8 full(ans) ans = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 2 0 5 0 0 0 0 稀疏矩阵的计算: 同满矩阵比较,稀疏矩阵在算法上有很大的不 同。具体表现在存储空间减少,计算时间减少。 例:比较求解下面方程组n1000时两种方法的差别 。 n=1000; a1=sparse(1:n,1:n,4*ones(1,n),n,n); a2=sparse(2:n,1:n-1,ones(1,n-1),n,n); a=a1+a2+a2; b=ones(1000,1); tic; x=ab; t1=toc t1 = 0.4800 a=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年嘉兴南湖学院单招职业适应性测试题库汇编
- 科技教育与孩子成长网络的双重作用
- 十月革命的胜利与苏联的社会主义实践课件-2024-2025学年高一下统编版(2019)必修中外历史纲要下
- 科技企业如何应对伦理问题挑战
- 2025年湖北省荆门市单招职业倾向性测试题库完美版
- 2025年鹤岗师范高等专科学校单招职业技能测试题库审定版
- 2025年衡阳科技职业学院单招职业技能测试题库完整版
- 2025年海南卫生健康职业学院单招职业技能测试题库及答案一套
- 2025年济南护理职业学院单招职业倾向性测试题库学生专用
- 2025年湖北工程职业学院单招职业技能测试题库完整
- 2024四川省凉山州林业局招聘60人历年(高频重点复习提升训练)共500题附带答案详解
- DL∕T 5106-2017 跨越电力线路架线施工规程
- 西师大版数学四年级下册全册教学课件(2024年3月修订)
- 绿化养护服务投标方案(技术标)
- 九年级物理第一课
- 代孕合同范本
- 医疗事故处理条例解读专家讲座
- 心电监护仪的使用幻灯片
- 全年无休供货承诺书
- 博物馆跨界合作的趋势与挑战
- 宁夏银川三中2023-2024学年九年级上学期期末物理试卷
评论
0/150
提交评论