




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、隐函数的导数 定义: 隐函数的显化 问题:隐函数不易显化或不能显化如何求导? 隐函数求导法则: 用复合函数求导法则直接对方程两边求导. 例1 解 解得 例2 解 所求切线方程为 显然通过原点. 例3 解 二、对数求导法 观察函数 方法: 先在方程两边取对数, 然后利用隐函数的求导 方法求出导数. -对数求导法 适用范围: 例4 解等式两边取对数得 例5 解等式两边取对数得 一般地 三、由参数方程所确定的函数的导数 例如 消去参数 问题: 消参困难或无法消参如何求导? 由复合函数及反函数的求导法则得 例6 解 所求切线方程为 例7 解 例8 解 四、相关变化率 相关变化率问题: 已知其中一个变化率时如何求出另一个变化率? 例9 解 仰角增加率 例10 解 水面上升之速率 4000m 五、小结 隐函数求导法则: 直接对方程两边求导; 对数求导法: 对方程两边取对数,按隐函数的求导 法则求导; 参数方程求导: 实质上是利用复合函数求导法则; 相关变化率: 通过函数关系确定两个相互依赖的 变化率; 解法: 通过建立两者之间的关系, 用链 式求导法求解.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入股开店合同范例
- 共同资产出售合同样本
- 共同富裕合作合同样本
- 供应合同标准文本标准文本
- 专项合作合同样本
- 个人租给公司设备合同样本
- pet材料购销合同样本
- 中介外包合同样本
- 住房单间合租合同标准文本
- 企业培训咨询合同标准文本
- 2025年从大模型、智能体到复杂AI应用系统的构建报告-以产业大脑为例-浙江大学(肖俊)
- 厂房电费收租合同范例
- 2024年南京市事业单位专项招聘退役大学生士兵笔试真题
- 增资扩股方案模板
- 鹅产业绿色循环发展-深度研究
- “三新”背景下高中文言文教学难点突破策略
- (完整版)Camtasia-Studio使用教程
- 监理月报(水利工程)
- 外研版(2025新版)七年级下册英语期中复习:Unit 1~3+期中共4套学情调研测试卷(含答案)
- 2025年军队文职考试《公共科目》试题与参考答案
- 班组的安全文化汇报
评论
0/150
提交评论