二次函数培优试题(30道解答题).doc_第1页
二次函数培优试题(30道解答题).doc_第2页
二次函数培优试题(30道解答题).doc_第3页
二次函数培优试题(30道解答题).doc_第4页
二次函数培优试题(30道解答题).doc_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数培优试题(30道解答题)注:全是2014年各地市中考题,不少是压轴题一解答题(共30小题)1设m是不小于1的实数,使得关于x的方程x2+2(m2)x+m23m+3=0有两个不相等的实数根x1,x2(1)若+=1,求的值;(2)求+m2的最大值2用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由3如图1,反比例函数y=(x0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC=75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值4如图,已知二次函数y=a(xh)2+的图象经过原点O(0,0),A(2,0)(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60到OA,试判断点A是否为该函数图象的顶点?5若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x24mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0x3时,y2的最大值6如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称p,q为此函数的特征数,如函数y=x2+2x+3的特征数是2,3(1)若一个函数的特征数为2,1,求此函数图象的顶点坐标(2)探究下列问题:若一个函数的特征数为4,1,将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数若一个函数的特征数为2,3,问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为3,4?7已知抛物线C:y=x2+bx+c经过A(3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C,抛物线C的顶点记为M,它的对称轴与x轴的交点记为N如果以点M、N、M、N为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?8如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,1)和C(4,5)三点(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值9如图,抛物线y=ax2+2x+c经过点A(0,3),B(1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长注:抛物线y=ax2+bx+c(a0)的顶点坐标是(,)10在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,2),B(3,4)(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围11如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D(1)请直接写出D点的坐标(2)求二次函数的解析式(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围12已知关于x的方程x2(2k3)x+k2+1=0有两个不相等的实数根x1、x2(1)求k的取值范围;(2)试说明x10,x20;(3)若抛物线y=x2(2k3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OAOB3,求k的值13已知二次函数y=x24x+3(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及ABC的面积14利用二次函数的图象估计一元二次方程x22x1=0的近似根(精确到0.1)15实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k0)刻画(如图所示)(1)根据上述数学模型计算:喝酒后几时血液中的酒精含量达到最大值?最大值为多少?当x=5时,y=45,求k的值(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由16九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销量的相关信息如下表:时间x(天)1x5050x90售价(元/件)x+4090每天销量(件)2002x已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果17某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件)38363432302826t(件)481216202428假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价每件服装的进货价)18“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?19某商场在1月至12月份经销某种品牌的服装,由于受到时令的影响,该种服装的销售情况如下:销售价格y1(元/件)与销售月份x(月)的关系大致满足如图的函数,销售成本y2(元/件)与销售月份x(月)满足y2=,月销售量y3(件)与销售月份x(月)满足y3=10x+20(1)根据图象求出销售价格y1(元/件)与销售月份x(月)之间的函数关系式;(6x12且x为整数)(2)求出该服装月销售利润W(元)与月份x(月)之间的函数关系式,并求出哪个月份的销售利润最大?最大利润是多少?(6x12且x为整数)20某商品的进价为每件20元,售价为每件25元时,每天可卖出250件市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元请比较哪种方案的最大利润更高,并说明理由21在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图象为折线OABC,y2的图象是过O、B、C三点的抛物线一部分(1)根据图象回答:调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是_;说明线段AB的实际意义是_(2)求出调试过程中,当6x8(3)时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式22某研究所将某种材料加热到1000时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA、yB,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120时,B组材料的温度是多少?(3)在0x40的什么时刻,两组材料温差最大?23某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人设提价后的门票价格为x(元/人)(x20),日接待游客的人数为y(人)(1)求y与x(x20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入接待成本)24某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本每天的销售量)25某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元每提高一个档次,每件利润增加2元,但一天产量减少5件(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1x10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次26某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=20x1+1500(0x120,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=10x2+1300(0x220,x2为整数)(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润27某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务)(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?28在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套设销售单价为x(x60)元,销售量为y套(1)求出y与x的函数关系式(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?参考公式:抛物线y=ax2+bx+c(a0)的顶点坐标是29某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?30某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入经营总成本)求w关于x的函数关系式;若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润参考答案与试题解析一解答题(共30小题)1设m是不小于1的实数,使得关于x的方程x2+2(m2)x+m23m+3=0有两个不相等的实数根x1,x2(1)若+=1,求的值;(2)求+m2的最大值考点:根与系数的关系;根的判别式;二次函数的最值菁优网版权所有专题:代数综合题分析:(1)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m的值;(2)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值解答:解:方程有两个不相等的实数根,=b24ac=4(m2)24(m23m+3)=4m+40,m1,结合题意知:1m1(1)x1+x2=2(m2),x1x2=m23m+3,+=1解得:m1=,m2=(不合题意,舍去)=2(2)+m2=m2=2(m1)m2=(m+1)2+3当m=1时,最大值为3点评:此题考查根与系数的关系,一元二次方程的根的判别式=b24ac来求出m的取值范围;解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=,x1x2=2用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由考点:一元二次方程的应用;根据实际问题列二次函数关系式菁优网版权所有专题:几何图形问题分析:(1)根据矩形的面积公式进行列式;(2)、(3)把y的值代入(1)中的函数关系,求得相应的x值即可解答:解:(1)设围成的矩形一边长为x米,则矩形的邻边长为:322x依题意得y=x(322x)=x2+16x答:y关于x的函数关系式是y=x2+16x;(2)由(1)知,y=x2+16x当y=60时,x2+16x=60,即(x6)(x10)=0解得 x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米;(3)不能围成面积为70平方米的养鸡场理由如下:由(1)知,y=x2+16x当y=70时,x2+16x=70,即x216x+70=0因为=(16)24170=240,所以 该方程无解即:不能围成面积为70平方米的养鸡场点评:本题考查了一元二次方程的应用解题的关键是熟悉矩形的周长与面积的求法,以及一元二次方程的根的判别式3如图1,反比例函数y=(x0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC=75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值考点:反比例函数综合题;一次函数的性质;二次函数的最值菁优网版权所有专题:代数几何综合题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直角三角形,所以BAH=45,得到DAC=BACBAH=30,根据特殊角的三角函数值得tanDAC=;由于ADy轴,则OD=1,AD=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0t1),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t,t1),则MN=t+1,根据三角形面积公式得到SOMN=t(t+1),再进行配方得到S=(t)2+(0t1),最后根据二次函数的最值问题求解解答:解:(1)把A(2,1)代入y=得k=21=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=得a=2,B点坐标为(1,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45,BAC=75,DAC=BACBAH=30,tanDAC=tan30=;ADy轴,OD=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为(0,1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,1)代入得,解,直线AC的解析式为y=x1;(3)设M点坐标为(t,)(0t1),直线lx轴,与AC相交于点N,N点的横坐标为t,N点坐标为(t,t1),MN=(t1)=t+1,SOMN=t(t+1)=t2+t+=(t)2+(0t1),a=0,当t=时,S有最大值,最大值为点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法求一次函数解析式;理解坐标与图形的性质;会利用二次函数的性质解决最值问题4如图,已知二次函数y=a(xh)2+的图象经过原点O(0,0),A(2,0)(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60到OA,试判断点A是否为该函数图象的顶点?考点:二次函数的性质;坐标与图形变化-旋转菁优网版权所有分析:(1)由于抛物线过点O(0,0),A(2,0),根据抛物线的对称性得到抛物线的对称轴为直线x=1;(2)作ABx轴与B,先根据旋转的性质得OA=OA=2,AOA=60,再根据含30度的直角三角形三边的关系得OB=OA=1,AB=OB=,则A点的坐标为(1,),根据抛物线的顶点式可判断点A为抛物线y=(x1)2+的顶点解答:解:(1)二次函数y=a(xh)2+的图象经过原点O(0,0),A(2,0)解得:h=1,a=,抛物线的对称轴为直线x=1;(2)点A是该函数图象的顶点理由如下:如图,作ABx轴于点B,线段OA绕点O逆时针旋转60到OA,OA=OA=2,AOA=60,在RtAOB中,OAB=30,OB=OA=1,AB=OB=,A点的坐标为(1,),点A为抛物线y=(x1)2+的顶点点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a0)的顶点坐标为(,),对称轴直线x=,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x时,y随x的增大而减小;x时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x时,y随x的增大而增大;x时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点也考查了旋转的性质5若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x24mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0x3时,y2的最大值考点:二次函数的性质;二次函数的最值菁优网版权所有专题:代数综合题;新定义分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(xh)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x3)2+420,该二次函数图象的开口向上当a=3,h=3,k=4时,二次函数的关系式为y=3(x3)2+430,该二次函数图象的开口向上两个函数y=2(x3)2+4与y=3(x3)2+4顶点相同,开口都向上,两个函数y=2(x3)2+4与y=3(x3)2+4是“同簇二次函数”符合要求的两个“同簇二次函数”可以为:y=2(x3)2+4与y=3(x3)2+4(2)y1的图象经过点A(1,1),2124m1+2m2+1=1整理得:m22m+1=0解得:m1=m2=1y1=2x24x+3=2(x1)2+1y1+y2=2x24x+3+ax2+bx+5=(a+2)x2+(b4)x+8y1+y2与y1为“同簇二次函数”,y1+y2=(a+2)(x1)2+1=(a+2)x22(a+2)x+(a+2)+1其中a+20,即a2解得:函数y2的表达式为:y2=5x210x+5y2=5x210x+5=5(x1)2函数y2的图象的对称轴为x=150,函数y2的图象开口向上当0x1时,函数y2的图象开口向上,y2随x的增大而减小当x=0时,y2取最大值,最大值为5(01)2=5当1x3时,函数y2的图象开口向上,y2随x的增大而增大当x=3时,y2取最大值,最大值为5(31)2=20综上所述:当0x3时,y2的最大值为20点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力而对新定义的正确理解和分类讨论是解决第二小题的关键6如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称p,q为此函数的特征数,如函数y=x2+2x+3的特征数是2,3(1)若一个函数的特征数为2,1,求此函数图象的顶点坐标(2)探究下列问题:若一个函数的特征数为4,1,将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数若一个函数的特征数为2,3,问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为3,4?考点:二次函数图象与几何变换;二次函数的性质菁优网版权所有专题:新定义分析:(1)根据题意得出函数解析式,进而得出顶点坐标即可;(2)首先得出函数解析式,进而利用函数平移规律得出答案;分别求出两函数解析式,进而得出平移规律解答:解:(1)由题意可得出:y=x22x+1=(x1)2,此函数图象的顶点坐标为:(1,0);(2)由题意可得出:y=x2+4x1=(x+2)25,将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+21)25+1=(x+1)24=x2+2x3,图象对应的函数的特征数为:2,3;一个函数的特征数为2,3,函数解析式为:y=x2+2x+3=(x+1)2+2,一个函数的特征数为3,4,函数解析式为:y=x2+3x+4=(x+)2+,原函数的图象向左平移个单位,再向下平移个单位得到点评:此题主要考查了二次函数的平移以及配方法求函数解析式,利用特征数得出函数解析式是解题关键7已知抛物线C:y=x2+bx+c经过A(3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C,抛物线C的顶点记为M,它的对称轴与x轴的交点记为N如果以点M、N、M、N为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质菁优网版权所有专题:分类讨论分析:(1)直接把A(3,0)和B(0,3)两点代入抛物线y=x2+bx+c,求出b,c的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示需要分类讨论解答:解:(1)抛物线y=x2+bx+c经过A(3,0)和B(0,3)两点,解得,故此抛物线的解析式为:y=x22x+3;(2)由(1)知抛物线的解析式为:y=x22x+3,当x=1时,y=4,M(1,4)(3)由题意,以点M、N、M、N为顶点的平行四边形的边MN的对边只能是MN,MNMN且MN=MNMNNN=16,NN=4i)当M、N、M、N为顶点的平行四边形是MNNM时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C;ii)当M、N、M、N为顶点的平行四边形是MNMN时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C上述的四种平移,均可得到符合条件的抛物线C点评:本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点第(3)问需要分类讨论,避免漏解8如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,1)和C(4,5)三点(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值考点:待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式(组)菁优网版权所有专题:代数综合题分析:(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案解答:解:(1)二次函数y=ax2+bx+c的图象过A(2,0),B(0,1)和C(4,5)三点,a=,b=,c=1,二次函数的解析式为y=x2x1;(2)当y=0时,得x2x1=0;解得x1=2,x2=1,点D坐标为(1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是1x4点评:本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握9如图,抛物线y=ax2+2x+c经过点A(0,3),B(1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长注:抛物线y=ax2+bx+c(a0)的顶点坐标是(,)考点:待定系数法求二次函数解析式;二次函数的性质菁优网版权所有专题:计算题分析:(1)将A与B代入抛物线解析式求出a与c的值,即可确定出抛物线解析式;(2)利用顶点坐标公式表示出D点坐标,进而确定出E点坐标,得到DE与OE的长,根据B点坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长解答:解:(1)抛物线y=ax2+2x+c经过点A(0,3),B(1,0),将A与B坐标代入得:,解得:,则抛物线解析式为y=x2+2x+3;(2)点D为抛物线顶点,由顶点坐标(,)得,D(1,4),对称轴与x轴交于点E,DE=4,OE=1,B(1,0),BO=1,BE=2,在RtBED中,根据勾股定理得:BD=2点评:此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键10在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,2),B(3,4)(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值菁优网版权所有分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围解答:解:(1)抛物线y=2x2+mx+n经过点A(0,2),B(3,4),代入得:,解得:,抛物线解析式为y=2x24x2,对称轴为直线x=1;(2)由题意得:C(3,4),二次函数y=2x24x2的最小值为4,由函数图象得出D纵坐标最小值为4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,直线BC解析式为y=x,当x=1时,y=,则t的范围为4t点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键11如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D(1)请直接写出D点的坐标(2)求二次函数的解析式(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围考点:抛物线与x轴的交点;待定系数法求二次函数解析式;二次函数与不等式(组)菁优网版权所有专题:待定系数法分析:(1)根据抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)根据图象直接写出答案解答:解:(1)如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,对称轴是x=1又点C(0,3),点C、D是二次函数图象上的一对对称点,D(2,3);(2)设二次函数的解析式为y=ax2+bx+c(a0,a、b、c常数),根据题意得 ,解得 ,所以二次函数的解析式为y=x22x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x2或x1点评:本题考查了抛物线与x轴的交点,待定系数法求二次函数解析式以及二次函数与不等式组解题时,要注意数形结合数学思想的应用另外,利用待定系数法求二次函数解析式时,也可以采用顶点式方程12已知关于x的方程x2(2k3)x+k2+1=0有两个不相等的实数根x1、x2(1)求k的取值范围;(2)试说明x10,x20;(3)若抛物线y=x2(2k3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OAOB3,求k的值考点:抛物线与x轴的交点;根的判别式;根与系数的关系菁优网版权所有专题:代数综合题分析:(1)方程有两个不相等的实数根,则判别式大于0,据此即可列不等式求得k的范围;(2)利用根与系数的关系,说明两根的和小于0,且两根的积大于0即可;(3)不妨设A(x1,0),B(x2,0)利用x1,x2表示出OA、OB的长,则根据根与系数的关系,以及OA+OB=2OAOB3即可列方程求解解答:解:(1)由题意可知:=(2k3)24(k2+1)0,即12k+50 (2),x10,x20 (3)依题意,不妨设A(x1,0),B(x2,0)OA+OB=|x1|+|x2|=(x1+x2)=(2k3),OAOB=|x1|x2|=x1x2=k2+1,OA+OB=2OAOB3,(2k3)=2(k2+1)3,解得k1=1,k2=2 ,k=2点评:本题考查了二次函数与x轴的交点,两交点的横坐标就是另y=0,得到的方程的两根,则满足一元二次方程的根与系数的关系13已知二次函数y=x24x+3(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及ABC的面积考点:抛物线与x轴的交点;二次函数的性质;二次函数的三种形式菁优网版权所有专题:数形结合分析:(1)配方后求出顶点坐标即可;(2)求出A、B的坐标,根据坐标求出AB、CD,根据三角形面积公式求出即可解答:解:(1)y=x24x+3=x24x+44+3=(x2)21,所以顶点C的坐标是(2,1),当x2时,y随x的增大而减少;当x2时,y随x的增大而增大;(2)解方程x24x+3=0得:x1=3,x2=1,即A点的坐标是(1,0),B点的坐标是(3,0),过C作CDAB于D,AB=2,CD=1,SABC=ABCD=21=1点评:本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中14利用二次函数的图象估计一元二次方程x22x1=0的近似根(精确到0.1)考点:图象法求一元二次方程的近似根菁优网版权所有专题:数形结合分析:根据函数与方程的关系,可得函数图象与x轴的交点的横坐标就是相应的方程的解解答:解:方程x22x1=0根是函数y=x22x1与x轴交点的横坐标作出二次函数y=x22x1的图象,如图所示,由图象可知方程有两个根,一个在1和0之间,另一个在2和3之间先求1和0之间的根,当x=0.4时,y=0.04;当x=0.5时,y=0.25;因此,x=0.4(或x=0.5)是方程的一个近似根,同理,x=2.4(或x=2.5)是方程的另一个近似根点评:本题考查了图象法求一元二次方程的近似值,解答此题的关键是求出对称轴,然后由图象解答,锻炼了学生数形结合的思想方法15实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k0)刻画(如图所示)(1)根据上述数学模型计算:喝酒后几时血液中的酒精含量达到最大值?最大值为多少?当x=5时,y=45,求k的值(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由考点:二次函数的应用;反比例函数的应用菁优网版权所有专题:应用题;数形结合分析:(1)利用y=200x2+400x=200(x1)2+200确定最大值;直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班解答:解:(1)y=200x2+400x=200(x1)2+200,喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);当x=5时,y=45,y=(k0),k=xy=455=225;(2)不能驾车上班;理由:晚上20:00到第二天早上7:00,一共有11小时,将x=11代入y=,则y=20,第二天早上7:00不能驾车去上班点评:此题主要考查了反比例函数与二次函数综合应用,根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论