


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017年课标高考 母题 备战高考数学的一条捷径 169 中国 高考数学母题 (第 050 号 ) 基本数列的 交汇 在知识的交汇处设计试题 ,是高考命题的重要原则 ,其中 ,与基本 数列 (等差 与 等 比 数列 )的 自然 交汇 有 :数列与 基本不等式 、 整值 函数 的最值问题 和 等差数列与对称函数 . 母题结构 :( )(数列与 基本不等式 )若 数列 正项 等差数列 ,则 an+k,na+ 2若数列 等 比 数列 ,则 an+2数列 正项等比数列 ,且 |则 am+anak+( )(整值 函数 的最值问题 )求 整值 函数 f(n)(n N)的最 大 值 和 最 小 值 有两种方法 : 根据 f(n+1)-f(n)的符号 ,判断 f(n)的单调性 ,由此求解 ; 先求 f(x)的最 大 值 或 最 小 值 (m,m+1),然后通过比较 f(m)与 f(m+1)的大小 确定 解 ; ( )(等差数列与对称函数 )已知函数 f(x)在区间 (a,b)上单调 ,且图像关于点 M(x0,称 ,等差数列 足 (a,b),若 f(f( +f(2 : an= f( a1+ +2母题 解 析 :略 . 子题类型 :(2010年 天津 高考试题 )设 等比数列 ,公比 q= 2 ,前 记 217n n N+最大项 ,则 . 解析 :由 Tn=1( )1()1(172 ;设 qn=t,则 121(t+129,当 t=( 2 )n=4 n=4 时 ,故 . 点评 :数列与基本不等式的交汇还包括 等比数列与 双曲函数 的 结合 ,即 利用 双曲函数 性质 解决 等比数列 的相关问题 . 同 类 试题 : 1.(2015 年 北京 高考试题 )设 等差数列 ,下列结论中正确的是 ( ) (A)若 a1+,则 a2+ (B)若 a1+)若 .(2008 年四川高考试题 )己知等比数列 ,则其前 3项和 ) (A)(- , (B)(- ,0) (1,+ ) (C)3,+ ) (D)(- , 3,+ ) 子题类型 :(2013 年 课标 高考试题 )等差数列 前 n 项和为 知 ,5,则 . 解析 :设 n,由 ,5 10A+B=0,45A+3B=5 A=31,B=1 f(n)=31 f(n+ 1)-f(n)=a n 的值为 . 子题类型 :(2009年 上海 高考试题 )已知函数 f(x)=7的等差数列 足 (2),且公差 d 0.若 f(f( +f(0,则当 k 时 ,f(0. 170 备战高考数学的一条捷径 2017年课标高考 母题 解析 :由 f(x)单调递增 ,且 为奇函数 ,由 母题知 f(0 k=14. 点评 :由 an+k=2等差数列 具有较好的 对称性 ,母题 是 等差数列 的 对称性 与函数对称性的 有机结合 . 同 类 试题 : 5.(2011 年 广东 高考试题 )等差数列 9 项的和等于前 4项的和 .若 ,ak+,则 k= . 6.(2012 年 四川 高考 理 科 试题 )设函数 f(x)=2 公差为8的等差数列 ,f(f( +f(5 ,则f(2 ) (A)0 (B)161 2 (C)81 2 (D)1613 2 7.(2012 年 北京 高考试题 )已知 等比数列 ,下面结论种正确的是 ( ) (A)a1+2 (B)2 (C)若 a1= a1= (D)若 a3 a4.(2012年 上海 春抬 试题 )已知等差数列 首项及公差均为正数 ,令 bn=na+2012(n N+,由 31 C). 设公比为 q,则 S3=+D). 由 a2+a1+a3)q q=21 2722 ,当且仅当 n=3,4 时 ,大值为 36=64. 由 以 ,不等式 22 2 )11( 2 52 )11( 2n2 52 )11( 0 k=4. 由 y=x=1对称 方程 (m)(n)=0的四个根 关于 1对称 ,又由等差数列的对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药物外渗护理不良事件
- 西藏那曲地区安多县2025届三下数学期末教学质量检测试题含解析
- 6S基本知识培训课件
- 云南省昆明市五华区2024-2025学年高三元月三诊一模语文试题文试题含解析
- 河南省安阳市林州第一中学2025届高三5月全程模拟考试数学试题试卷含解析
- 商水县2025届数学四年级第二学期期末统考试题含解析
- 2025年江苏省南京市玄武区溧水高中第二学期高三第一次模拟考试数学试题含解析
- 中国农业大学《写意人物》2023-2024学年第二学期期末试卷
- 厦门医学院《遥感影像处理与分析》2023-2024学年第二学期期末试卷
- 2025年广州市番禹区重点中学初三下学期模拟测试(三)化学试题含解析
- 基坑监测周报
- 客户信用等级评价表
- 中国各省份分地市地图(矢量图)
- CCTV雨污水管道检测缺陷内容判断依据判断标准
- 《青少年管弦乐队指南》.PPT
- 合规管理有效性评估表
- 应急管理试题库
- 苯的加成精彩动画演示教学课件
- 输电线路验收典型缺陷识别
- 肠结核的护理PPT幻灯片
- 万科集团绩效考核分析—绩效管理课程设计报告
评论
0/150
提交评论