




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年江苏省南京市玄武区溧水高中第二学期高三第一次模拟考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A. B. C. D.2.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个 B.个 C.个 D.个3.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A. B. C. D.4.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.5.设实数、满足约束条件,则的最小值为()A.2 B.24 C.16 D.146.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则()A.10 B.11 C.12 D.137.的展开式中有理项有()A.项 B.项 C.项 D.项8.已知函数,若,则的值等于()A. B. C. D.9.执行如图的程序框图,若输出的结果,则输入的值为()A. B.C.3或 D.或10.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是()A.1月至8月空气合格天数超过天的月份有个B.第二季度与第一季度相比,空气达标天数的比重下降了C.8月是空气质量最好的一个月D.6月份的空气质量最差.11.函数的图象的大致形状是()A. B. C. D.12.给出下列三个命题:①“”的否定;②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0 B.1 C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为________.14.用数字、、、、、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_____个.15.已知等差数列的前n项和为,,,则=_______.16.下图是一个算法的流程图,则输出的x的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.18.(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.19.(12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、、、、、、、八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则,,)20.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.组别频数(1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求;(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.(ⅰ)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;(ⅱ)每次赠送的随机话费和相应的概率如下表.赠送的随机话费/元概率现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.附:,若,则,,.21.(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.(1)给出所有的元素均小于的好集合.(给出结论即可)(2)求出所有满足的好集合.(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.22.(10分)已知函数.(1)当时,求的单调区间.(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.(3)已知分别在,处取得极值,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到故答案为:D.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).2.C【解析】
计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球.故选:本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.3.B【解析】
求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.4.A【解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.本道题考查了抛物线的基本性质,难度中等.5.D【解析】
做出满足条件的可行域,根据图形即可求解.【详解】做出满足的可行域,如下图阴影部分,根据图象,当目标函数过点时,取得最小值,由,解得,即,所以的最小值为.故选:D.本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.6.D【解析】
利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,,构成等差数列可得即又解得:又所以时,.故选:D本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.7.B【解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,,当,,,时,为有理项,共项.故选:B.本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.8.B【解析】
由函数的奇偶性可得,【详解】∵其中为奇函数,也为奇函数∴也为奇函数∴故选:B函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数9.D【解析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得
,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为
或3,故选:D.本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.10.D【解析】由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选.11.B【解析】
根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.【详解】函数易知为奇函数,故排除D.又,易知当时,;又当时,,故在上单调递增,所以,综上,时,,即单调递增.又为奇函数,所以在上单调递增,故排除A,C.故选:B本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.12.C【解析】
结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题.故假命题有①③.故选:C本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:本题考查柱体、锥体的体积计算,属于基础题.14.【解析】
对首位数的奇偶进行分类讨论,利用分步乘法计数原理和分类加法计数原理可得出结果.【详解】①若首位为奇数,则第一、三、五个数位上的数都是奇数,其余三个数位上的数为偶数,此时,符号条件的位自然数个数为个;②若首位数为偶数,则首位数不能为,可排在第三或第五个数位上,第二、四、六个数位上的数为奇数,此时,符合条件的位自然数个数为个.综上所述,符合条件的位自然数个数为个.故答案为:.本题考查数的排列问题,要注意首位数字的分类讨论,考查分步乘法计数和分类加法计数原理的应用,考查计算能力,属于中等题.15.【解析】
利用求出公差,结合等差数列的通项公式可求.【详解】设公差为,因为,所以,即.所以.故答案为:本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.16.1【解析】
利用流程图,逐次进行运算,直到退出循环,得到输出值.【详解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此时14>10×1+3,输出x,故输出x的值为1.故答案为:.本题主要考查程序框图的识别,“还原现场”是求解这类问题的良方,侧重考查逻辑推理的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2).【解析】
(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【详解】(1)证明:取的中点,连接.是的中点,,又,四边形是平行四边形.,又平面平面,平面.(2),,同理可得:,又平面.连接,设,则,建立空间直角坐标系.设平面的法向量为,则,则,取.直线与平面所成角的正弦值为.此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.18.(1)(2)【解析】
(1)零点分段法,分,,讨论即可;(2)当时,原问题可转化为:存在,使不等式成立,即.【详解】解:(1)若时,,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,综上述:不等式的解集为;(2)当时,由得,即,故得,又由题意知:,即,故的范围为.本题考查解绝对值不等式以及不等式能成立求参数,考查学生的运算能力,是一道容易题.19.(Ⅰ)1636人;(Ⅱ)见解析.【解析】
(Ⅰ)根据正态曲线的对称性,可将区间分为和两种情况,然后根据特殊区间上的概率求出成绩在区间内的概率,进而可求出相应的人数;(Ⅱ)由题意得成绩在区间[61,80]的概率为,且,由此可得的分布列和数学期望.【详解】(Ⅰ)因为物理原始成绩,所以.所以物理原始成绩在(47,86)的人数为(人).(Ⅱ)由题意得,随机抽取1人,其成绩在区间[61,80]内的概率为.所以随机抽取三人,则的所有可能取值为0,1,2,3,且,所以,,,.所以的分布列为0123所以数学期望.(1)解答第一问的关键是利用正态分布的三个特殊区间表示所求概率的区间,再根据特殊区间上的概率求解,解题时注意结合正态曲线的对称性.(2)解答第二问的关键是判断出随机变量服从二项分布,然后可得分布列及其数学期望.当被抽取的总体的容量较大时,抽样可认为是等可能的,进而可得随机变量服从二项分布.20.(1);(2)见解析.【解析】
(1)根据题中所给的统计表,利用公式计算出平均数的值,再利用数据之间的关系将、表示为,,利用题中所给数据,以及正态分布的概率密度曲线的对称性,求出对应的概率;(2)根据题意,高于平均数和低于平均数的概率各为,再结合得元、元的概率,分析得出话费的可能数据都有哪些,再利用公式求得对应的概率,进而得出分布列,之后利用离散型随机变量的分布列求出其数学期望.【详解】(1)由题意可得,易知,,,;(2)根据题意,可得出随机变量的可能取值有、、、元,,,,.所以,随机变量的分布列如下表所示:所以,随机变量的数学期望为.本题考查概率的计算,涉及到平均数的求法、正态分布概率的计算以及离散型随机变量分布列及其数学期望,在解题时要弄清楚随机变量所满足的分布列类型,结合相应公式计算对应事件的概率,考查计算能力,属于中等题.21.(1),,,.(2);证明见解析.(3)证明见解析.【解析】
(1)根据好集合的定义列举即可得到结果;(2)设,其中,由知;由可知或,分别讨论两种情况可的结果;(3)记,则,设,由归纳推理可求得,从而得到,从而得到,可知存在元素满足题意.【详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 潍坊食品科技职业学院《生理学中医方法论医学哲学》2023-2024学年第二学期期末试卷
- 新疆农业大学《城市交通管理》2023-2024学年第二学期期末试卷
- 武汉市汉阳区重点中学2024-2025学年初三下学期期末生物试题理试题含解析
- 矿物加工厂安全生产与事故预防考核试卷
- 矿产勘查中的地质公园建设与保护考核试卷
- 白酒与传统文化产业的结合与创新模式探讨考核试卷
- 社交媒体与全球文化传播考核试卷
- 矿石提炼工艺的经济效益分析考核试卷
- 物联网在零售行业的应用考核试卷
- 林木育种与森林碳汇能力提升考核试卷
- 2025年全国普通话水平测试15套复习题库及答案
- 2024年天津医科大学眼科医院自主招聘考试真题
- 土木工程毕业论文-居民住宅楼的施工组织方案设计
- 组织内的有效沟通报联商
- 2025年肺心病的护理试题及答案
- 航空航天行业工程师求职简历
- 爱护牙齿-儿童保健课件
- 拒绝间歇性努力不做45度青年-“拒绝躺平”主题班会-2024-2025学年初中主题班会课件
- 第10课 古代的村落、集镇和城市课件(共20张)2024-2025学年高二历史统编版选择性必修二
- 公交行车安全指导书
- 2025年中航货运航空有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论