机器人机构学课件_第1页
机器人机构学课件_第2页
机器人机构学课件_第3页
机器人机构学课件_第4页
机器人机构学课件_第5页
已阅读5页,还剩118页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 机器人机构学,第一节 概述 第二节 机身和臂部机构 第三节 手腕部机构 第四节 行走部机构 第五节 机器人关节的驱动、传动机构 第六节 机器人的各种性能指标 第七节 并联机器人,第一节 概述,1 机器人机构的分类 2 机器人机构的运动 3 机器人工作空间,直角坐标型,圆柱坐标型,球坐标型,关节型,图1 四种坐标机器人,第一节,沿着三个互相垂直的轴线移动来改变手部的空间位置。其前三关节为移动关节(PPP)运动形式如图:,1)直角坐标型机器人,1、机器人机构的分类,该类操作机是通过两个移动和一个转动(RPP)来实现手部的空间位置的变化,运动形式如图所示:,2)圆柱坐标型机器人,该类操作机用

2、两个转动和一个移动(RRP)来改变手部的空间位置,运动形式如图所示:,3)球坐标型机器人,这类操作机是模拟人的上臂而构成的。它的前三个关节都是转动关节(RRR),运动形式如图所示:,4)关节型机器人,2、机器人机构的运动,1)机器人的运动自由度 运动自由度的定义 以自由度分类的机器人 自由度的分布,机器人自由度的定义,定义:用来确定手部相对于机身位置的每个独立变化的参数,称为机器人的自由度。,以自由度分类的机器人,任一自由的空间物体,须有六个自由度描述其在空间的位置和姿态,三个正交移动轴,决定物体的位置;三个绕坐标轴 的转动,决定物体的姿态变化。 称六个自由度机器人为满自由度机器人,少于六个自

3、由度机器人为欠自由度机器人, 多于六个自由度机 器人为冗余自由度机器人。,第一节,自由度的分布,一般机器人的机身和手臂构成前三个关节,具有三个自由度,可确定手部在空间的位置,所构成的机构称位置机构; 手腕和手部构成后三个关节,具有三个自由度,可确定手部在空间的姿态,所构成的机构称之为姿态机构。 位置机构确定机器人的 空间工作范围, 其运动称为 主运动 。,图2-3 PUMA操作机的各个自由度 1机座 2腰部 3臂部 4腕部 5手部,2)机器人的运动范围,指机器人手腕在空间运动图形及其大小,运动范围取决于臂部的自由度。,3)机器人的各种运动形式,(1)直移型:直线运动L 伸缩运动E (2)回转型

4、:扭角运动T 摆角运动R,第一节,3、 机器人工作空间,1)定义: 手腕部坐标系原点PW能在空间活动的最大活动范围。又称可达空间 ,或总工作空间,记W(PW) 。,直角坐标机器人的工作空间示意图,圆柱坐标机器人的工作空间示意图,球坐标机器人的工作空间示意图,PUMA机器人工作空间示意图,2)灵活工作空间,灵活工作空间:末端执行器可以任意姿态达到 的工作空间,记作WP(P)。 类灵活工作空间以全方位到达, 类灵活工作空间只能以有限个方位到达。 次灵活工作空间:总工作空间去掉灵活工作空 间的部分,WS(P)。,3)奇异形位,W(P)总工作空间的边界点所对应的机器人的位置和姿态,及机器人工作空间内部

5、使机械产生干涉的位置和姿态。,4)两个基本问题,1)正问题:给出某一结构形式和结构参数的操作机以及关节变量的变化范围,求工作空间,称工作空间分析。 2)逆问题:给出某一限定的工作空间,求操作机的结构形式,参数和关节变量的变化范围,称工作空间的综合 。,5)确定工作空间的方法,(1)解析法 用数学模型计算工作空间的边界 (2)图解法 国标规定了工作空间的几何作图法 结构限制分析 画出工作空间的主剖面(xoz剖面) 画出工作空间的俯视剖面(xoy剖面),第二节 机身和臂部机构,1、机身和臂部的作用 2、机身和臂部机构设计的特点 3、机身结构 4、臂部结构,1、机身和臂部的作用,1)机身定义:机身是

6、连接、支承手臂及行走机构的部件 作用:臂部的驱动装置或传动装置安装在机身上。 类型:机身有固定式和行走式两种。 2)手臂定义:手臂部件是连接机身和手腕的部件。 作用:支承腕部和手部,带动手及腕在空间运动。 特点:结构类型多、受力复杂。,2、机身和臂部机构设计的特点,1)刚度 :为了得到较高的精度,机器人机身和手臂的机械结构刚度比强度更重要。刚度可分为结构刚度、支承刚度、伺服刚度等。 根据受力情况,合理选择截面形状与尺寸; 提高支承刚度和接触刚度; 合理布置作用力的位置和方向;,2)精度 :机器人的精度可分为绝对精度和重复定位精度。机器人终端执行器(手部)的精度与臂和机身的位置精度密切相关。影响

7、机器人精度的因素有: 刚度 制造和装配精度 手腕部在手臂上的连接和定位方式 运动部件的导向精度,3)平稳性 :机身和臂部的运动多、质量较大、当负荷大且高速运行时,由于运动状态变化,将产生冲击和振动。应采取有效的缓冲装置以吸收冲击能量。 运动部件力求结构紧凑、重量轻; 减少重心布置不当而造成的偏心附加力矩; 4)其他:对特殊要求的要有相应措施,如防爆、防尘、防水、防真空、防辐射、防腐蚀等。,3、机身和臂的配置形式及结构,机身是支承手、臂且带其运动的部件,由于机器人的运动形式、使用条件 、负荷能力各不相同,所采用的驱动装置,传动机构、导向装置亦不同,使机器人机身有很大差异,结构十分复杂。 分类:

8、1)横梁式 2)立柱式 3)屈伸式 4)类人型;,垂直平面屈伸 水平平面屈伸(SCARA) 空间屈伸,基座与立柱结构图,PUMA-262型机器人,4、臂部结构,臂部主要包括臂杆,以及自身屈伸、伸缩、 自转等运动有关的传动、驱动、导向定位、支录、 位置检测元件等,主要结构有: 伸缩型 伸缩与旋转型 屈伸型 弹性手臂 柔性手臂,手臂的结构形式 (a)、 (b) 单臂式; (c) 双臂式; (d) 悬挂式,双臂机器人的手臂结构,手臂俯仰驱动缸安置示意图,铰接活塞缸实现手臂俯仰运动结构示意图,第三节 手腕部机构,1、 概述 2、手部机构 3、腕部机构,1、 概述,(1)手部:是最重要的执行机械,工业机

9、器人 手部可分为: 1.夹持类 2.吸附类 (2)腕部: 1.完成手部的俯仰,摆动和旋转; 2.智能机器人腕部具有力、力矩传感器。,2、手部机构,1)夹钳式手部的组成 手指 传动机构 驱动装置,夹钳式手部的组成,斜楔杠杆式手部,双支点连杆杠杆式手部,齿条齿轮杠杆式手部,直线平移型手部,四连杆机构平移型手部结构,真空吸附取料手,2)设计要点, 开闭范围; 夹紧力; 定位精度; 结构紧凑,重量轻,效率高; 通用性和可换性;,第三节,气动换接器与专用末端操作器库,专用末端操作器库,多工位末端操作器换接装置 (a) 棱锥型; (b) 棱柱型,3)手指, 手指形状 V型手指 尖、薄、长型手指 平面型手指

10、 特型手指 指面形状 光滑柔性 齿形 手指材料,4)传动机构, 设计要点 传力比; 传动效率; 传动比; 精度; 动作范围; 回转型 斜楔杠杆式 连杆杠杆式 滑槽杠杆式 齿轮、齿条杠杆式 平移型 平面平行移动机构 直线往复移动机构,第三节,5)其他结构形式的手部, 钩托式 弹簧式 气吸式 磁吸式 挠性,第三节,6)类人机器人手部关节式手指,贝 尔 格 莱 德 手 指,第三节,这是一个典型的类人手指,第三节,3、 腕部、关节部结构,1)关节的作用和分类 作用:关节将机器人的各构件连接起来,机器人各构件间的相对运动,通过驱动、传动装置在各关节上实现的。主要有运动传递和力 传递。 分类:旋转型关节和

11、直线移动型关节 腕关节在机器人中很重要,以下主要讨论腕关节。,第五节,2) 关节设计要点,力求结构紧凑,重量轻:关节的结构、重量、动力载荷直接影响机器人的结构、重量和性能。 尤其是腕关节, 处于手臂的末端 有2-3个自由度和驱动装置 需较大的力矩和尽量轻的重量 综合考虑,合理布局: 需要考虑强度、刚度、制造、装配、精度和、控制可靠性。 须考虑腕部的工作条件 如高低温、腐蚀性、防暴、防尘、防渗。,3)关节部结构,单自由度手腕 二自由度手腕 三自由度手腕,单自由度手腕,SCARA机器人,二自由度手腕,r = (A B )/2 p = (A + B )/2,Pitch-Roll 球形二自由度手腕,汇

12、交式两自由度手腕,偏置式两自由度手腕, 三自由度手腕,垂直相交三自由度手腕,汇交型三自由度手腕,球形汇交型三自由度手腕,偏交型三自由度手腕,回形偏交型三自由度手腕,PT-600型弧焊机器人手腕结构图,KUKA IR-662/100型机器人手腕装配图,第四节 行走部机构,1 概述 2运行车式行走机构,1概述,机器人可分为固定型和行走型 两种。工业机器人一般为固定式,而目前在开发研制的海洋水下机器人,原子能工业、空间机器人、军用机器人,都将是可移动的。,海洋水下机器人 核工业原子能反应唯用机器人 空间机器人 军用机器人 医疗福利机器人 服务机器人 移动式搬运机器人,移动式,固定式工业机器人,焊接

13、喷漆 上下料,机器人,轮式移动(包括履带式)机器人 步行移动(多足)机器人 推进器或喷射式移动机器人,可移动机器人,驱动装置 传动装置 位置检测 传感器,行走部机构包括,2 运行车式行走机构,(1)车轮式行走机构 (2)履带式行走机构 (3)步行式行走机构,(1)车轮式行走机构,1)车轮式动作稳定,自动操纵简单,在FMS或自动仓库中作搬运小车用得 较多,适合室内平地行走。 2)车轮式行走机构有3轮,4轮,或6轮等 3)车轮式行走机构采用的转向机构: 采用自位轮和主动轮差动转向将会有角度误差。 采用驱动转向轮,静止状态阻力大。,三轮车型移动机器人机构,三组轮,四轮车的驱动机构和运动,三角轮系的机

14、构图,全方位移动车的移动方式 (a) 全方位方式; (b) 转弯方式; (c) 旋转方式; (d) 制动方式,(2)履带式行走机构,履带式行走机构适合于野外作业,军用机器人,及各种勘探及探险,适应各种地形,爬坡可达45,可以爬楼梯。,适应地形的履带,(3)步行式行走机构,1)概述 2)四脚和多脚步行机构 3)脚-车混合行走机构 4)两脚步行式行走机构,(1)步行式行走机构的优点, 可在高低不平的地段上行走。 脚的主动性可保持平衡,不随地面晃动。 在柔软的地面上运动、效率不显著降低。,1)概述,火星探测用小漫游车,(2)动步行与静步行,静步行:机器人重心始终落在支持于地面的几只脚所圈成的多边形面

15、积内。 动步行:有时重心落在支撑面积外,利用重力和惯性力,作为步行的动力,步行速度快、耗能少。,(3)脚数与关节自由度数,步行机器人的脚数从两脚到七脚,静步行须四脚以上,各脚的自由度数不少于3个。,2)四脚和多脚步行机构,对于四脚以上的步行机构,若脚摆动机构的 速度为V,则脚落地时间与离地时间比为: :为脚占定因数 k:为机器人脚数 故四脚的最大行走速度(静步行) 而六脚的最大行走速度则为,四脚步行机器人步态,2 1,3 4,2 1,3 4,2 1,3 4,2 1,3 4,3)两脚步行式行走机构,1)优点: 有最好的适应性,与人类相似的优越性。 人类幻想的高级智能机器人的行走机构。 2)控制:

16、 无论是静步行或动步行,控制都困难,犹如倒摆 测出各物理量,控制机构连杆的相对角 利用脚尖在地面上的反作用力测重心的位置 3)静、动步行,第四节,八自由度两脚步行机器人步行特征,八自由度两脚步行机器人步行特征,第五节 机器人关节的驱动、传动机构,1、 机器人的驱动机构 2、机器人的传动机构,1. 机器人的驱动机构,驱动装置是使机器人各部件动作的动力源,目前常见的有: (1)液压驱动 (2)气压驱动 (3)电机驱动 (4)其他驱动方式,(1)液压驱动,1)液压驱动:是高压油作为工作介质,推动直线或旋转的油缸进行工作的, 在一个液压驱动系统中其主要的部件如下: 直线液压缸:在高压油的作用下,可作直

17、线往复运动, 摆动缸:在高压油的作用下可产生一定角度的摆动。 电液伺服阀:可精确地控制油路的开关、并可控制供油量的大小,以便对液压缸进行精确的控制,并可以根据位置传感器和速度传感器反馈的信号进行闭环控制。 2) 应用: 目前在负荷较大的搬运机器人和喷涂机器人应用较多。,(2)气压驱动,在所有的驱动方式中,气压驱动是最简单的,在工业中应用很广,其组成与液压驱动相似。 可以用机械的档次实现点到点的控制,并能达到较高的精度, 虽然达到高精度的伺服控制较难,但目前已经用微处理机直接控制的气动马达,定位精度在1mm。 在机器人中主要用于各种气动手爪,以及小型机器人的驱动。,第五节,(3)电机驱动,电动驱

18、动在机器人中的应用可以分成三种: 直流电机组成伺服控制系统; 交流(或)无刷直流电机组成伺服控制系统;步进电机驱动的开环数字控制系统。,(4)其他驱动方式,气囊式人工肌肉 磁致伸缩驱动 形状记忆合金(SMA)驱动器 压电晶体驱动器,新型的驱动方式 1. 磁致伸缩驱动 铁磁材料和亚铁磁材料由于磁化状态的改变, 其长度和体积都要发生微小的变化, 这种现象称为磁致伸缩。20世纪60年代发现某些稀土元素在低温时磁伸率达300010-610 00010-6,人们开始关注研究有适用价值的大磁致伸缩材料。 研究发现,TbFe2(铽铁)、SmFe2(钐铁)、DyFe2(镝铁)、 HoFe2(钬铁)、TbDyF

19、e2(铽镝铁)等稀土铁系化合物不仅磁致伸缩值高, 而且居里点高于室温, 室温磁致伸缩值为100010-6250010-6, 是传统磁致伸缩材料如铁、镍等的10100倍。 这类材料被称为稀土超磁致伸缩材料(Rear Earth Giant MagnetoStrictive Materials, 缩写为RE-GMSM)。,这一现象已用于制造具有微英寸量级位移能力的直线电机。 为使这种驱动器工作, 要将被磁性线圈覆盖的磁致伸缩小棒的两端固定在两个架子上。当磁场改变时, 会导致小棒收缩或伸展, 这样其中一个架子就会相对于另一个架子产生运动。 一个与此类似的概念是用压电晶体来制造具有毫微英寸量级位移的直

20、线电机。 美国波士顿大学已经研制出了一台使用压电微电机驱动的机器人“机器蚂蚁”。 “机器蚂蚁”的每条腿是长1 mm或不到1 mm的硅杆, 通过不带传动装置的压电微电机来驱动各条腿运动。 这种“机器蚂蚁”可用在实验室中收集放射性的尘埃以及从活着的病人体中收取患病的细胞。,2. 形状记忆金属 有一种特殊的形状记忆合金叫做Biometal(生物金属), 它是一种专利合金, 在达到特定温度时缩短大约4%。 通过改变合金的成分可以设计合金的转变温度, 但标准样品都将温度设在90左右。 在这个温度附近, 合金的晶格结构会从马氏体状态变化到奥氏体状态,并因此变短。然而,与许多其他形状记忆合金不同的是,它变冷

21、时能再次回到马氏体状态。如果线材上负载低的话,上述过程能够持续变化数十万个循环。实现这种转变的常用热源来自于当电流通过金属时,金属因自身的电阻而产生的热量。结果是,来自电池或者其他电源的电流轻易就能使生物金属线缩短。这种线的主要缺点在于它的总应变仅发生在一个很小的温度范围内,因此除了在开关情况下以外, 要精确控制它的拉力很困难,同时也很难控制位移。,(5)驱动方式的选择,机器人驱动器要求启动力矩大、调速范围宽、惯量小 选择驱动方式:负荷为2000N以下采用电动驱动方式 小功率点位控制采用气动驱动方式 大功率大力矩采用液压驱动方式 选择驱动器容量:额定速度时的额定功率 关节加减速时加速功率 最不

22、利形位时的负载力矩,2. 机器人的传动机构,1)常用传动机构类型和特点 (1) 齿轮类传动:主要有齿轮、蜗轮蜗杆、齿轮齿条 优点:响应快、扭矩大、刚性好 缺点:传动有间隙、故回差大,精度低 应用:腰、腕关节 (2) 链索类传动:主要有链条、齿形带、钢带 优点:无间隙、刚度与张紧装置有关,力矩较大 缺点:速比小,齿形带和钢带适用于小负载 应用:腕关节,2) 滚珠丝杠螺母副,使丝杠与螺母之间由滑动摩擦度为滚动摩擦的一种螺旋转动 在数控机床和机器人中应用较为广泛。 (1)结构组成: 滚珠丝杠螺母副可分为内循环和外循环两种。为消除回差,螺母分成两段,采用双螺母预紧消除间隙的方式,以垫片、锁紧螺母、齿差

23、调整两段螺母的相对位置。 (2)特点: 摩擦系数小且动静摩擦系数差小,效率高且逆传动效率 也高,灵敏度高、传动平移、磨损小、寿命长。,滚球丝杠副,3)谐波齿轮减速器,(1) 原理和结构 三大基本构件:刚轮、柔轮、波发生器 刚轮固定时减速比: 刚轮固定时减速比: Zb :柔轮齿数 Zg :刚轮齿数,(2) 特点:,优点:传动比大,单级可为50300,两级可达 20000。传动平稳,承载力高。多齿啮合磨 损小,传动效率可达0.85,传动精度高。 回差小,一般可小于 ,实现无回 差传动。 缺点:杯式柔轮刚度较低。,谐波齿轮传动,4) RV摆线针轮传动,(1)工作原理:由一级行星轮系再串联一级摆线轮减

24、速器组合而成。 (2)特点:除了谐波传动优点外,最显著的特点是刚性好。,工业机器人常用传动方式的比较与分析,PUMA 562机器人的传动示意图,第六节 机器人的规格及主要性能指标,1.有关负荷方面的性能指标: (1) 额定负荷:在正常运行条件下施加到手腕部的 最大负荷的容许值,包括末端执行 器、附件和惯性力。 (2)限定负荷:机器人机构部分不发生破坏或不出 故障时手腕外所能承受的最大负荷。 (3)最大推力和最大扭矩:指单轴的最大推力或最 大扭矩,2.有关运动方面的性能指标,(1) 自由度 (2) 单轴最大工作范围和工作速度 (3) 合成速度:表现为手腕中心的线速度,3.有关几何空间方面的性能指标,(1)工作空间 (2)灵活度:表示机器人在工作空间各点抓取物 体的灵活程度。用末杆位姿图最能 直观而准确地表示这一特点。,第六节,4. 有关精度方面的性能指标,(1)位姿精度 (2)距离精度 (3)轨迹精度 前三项统称定位精度 (4)位置重复精度,5. 有关动力源和控制方面的性能指标,(1)驱动方式: (2)控制方式:开环、闭环、点位、连续轨迹 (3)计算机容量 (4)插补方式 (5)编程方式 (6)分辨率:指操作机各轴可有效反应的最小 距离或角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论