




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PowerElectronicsChap. 13DC Motor DrivesChap.13DC Motor DrivesOutlinesu Introductionu Equivalent Circuit of DC Motorsu Permanent-magnet DC Motorsu DC Motors with A Separately Excited Field Windingu DC Servo Drivesu Adjustable-sped DC Drivesu SummaryChap.13DC Motor DrivesIntroduction In the past few y
2、ears, the use of ac motor drivesinthespeedandpositioncontrolapplicationsisincreasingduetotheirsimplestructure, efficiency,low andmaintenance,highreliability,highhigh power density.Maintenance costHighLowACMotorInitial costLowHighDCMotorChap.13DC Motor DrivesEquivalent Circuit of DC MotorsPermanent-
3、magnetestablish the field fluxField Windingf= k f I ffArmature Windinghandles the electric powerRotorDCMotorStatorChap.13DC Motor DrivesEquivalent Circuit of DC MotorsWith field winding ff= k f I fPermanent-magnetChap.13DC Motor DrivesEquivalent Circuit of DC Motors The electromagnetic torque is pro
4、duced by the interaction between the field flux and the armature current.= ktf f iaTem A back-emf is produced by the rotation of armature conductors at a speed in the presence of a field flux.ea= kef f wmElectrical PowerPe= eaia= kef f wmiaMechanical PowerPm= wmTem= ktf f wmiaP= P = kNmV In steady s
5、tate,k A Wb Wbrad/s emteChap.13DC Motor DrivesEquivalent Circuit of DC MotorsdiaV= e+ R i+ LtaaaadtJ= J dwm+ Bw+ TT(t)emmWLdtTotal equivalent JTotal equivalent BEquivalent load torqueTWLinertiadampingChap.13DC Motor DrivesEquivalent Circuitof DC Motors= ktf f iaea= kef f wmTemGeneratorGenerator High
6、 performance drives may operate in all four quadrantsChap.13DC Motor DrivesPermanent-magnet DC Motors Permanent magnets on the stator produce a constant field fluxff Electromagnetic torque.= ktf f= kT IaTemkT Back-emfEa= kEwm= kef fkE Voltage equationVt= Ea + Ra IaEquivalent circuitChap.12Introducti
7、on to Motor DrivesPermanent-magnet DC Motors The speed of a load with arbitrary torque can be controlled bycontrolling Vin a permanent-magnet dc motor with a constant f f.t1- Ra Limitation: the maximum speed is limited to the rated speed.w=(VT)mtemkkETTorque-speed characteristicContinuous torque-spe
8、ed capabilityChap.13DC Motor DrivesDC Motors with A Separately Excited Field Winding The limitations of permanent-magnet DC motors can beovercome by using a separately excited field winding to adjust f f .= VfIfRfRa1w=(V-T)mk ftk femeftfEquivalent circuitChap.13DC Motor DrivesDC Motors with A Separa
9、tely Excited Field WindingConstant torque controlConstant power control= ktf f iaTemea= kef f wm In the field weakening region, the speed may be exceeded by 50-100% of its rated value, depending on the motor design.Chap.13DC Motor DrivesDC Servo Drives If it were not for the disadvantages of having
10、a commutator and brushes, the dc motor would be ideally suited for servodrives, because the instantaneous torquecan be controlled= ktf f ialinearly by controlling the armature current.Tem13.5.1 Transfer function modelThree-loop control of dc servo drivesChap.13DC Motor DrivesDC Servo Drives13.5.1 Tr
11、ansfer function modeld(Di)Dv= De+ R Di+ Ltaaaaadt Equations for analyzing small-signal dynamic performance= kDwDeaEmDTem= kT Dia+ J d (Dwm )= DT+ BDwDTemWLmdtVt (s) = Ea (s) + (Ra + sLa )Ia (s)Ea (s) = kEwm (s)Tem (s) = kT Ia (s)Tem (s) = TWL (s) + (B + sJ )wm (s)wm (s) = sqm (s) Take the Laplace tr
12、ansformChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function modelVt (s) = Ea (s) + (Ra + sLa )Ia (s)Ea (s) = kEwm (s) Take the Laplace transformTem (s) = kT Ia (s)Tem (s) = TWL (s) + (B + sJ )wm (s)wm (s) = sqm (s)Chap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function modelInputs The
13、 superposition principle yields,Ra + sLakTw(s) =V (s) -T(s)m(R+ sL )(sJ + B) + kkt(R+ sL )(sJ + B) + kWLkaaTEaaTEChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function modelRa + sLakTw(s) =V (s) -T(s)mtWL(R+ sL )(sJ + B) + k+ sL )(sJ + B) + kk(RkaaTEaaTE Two closed-loop transfer functionsG (s
14、) = wm (s)kT=1(R+ sL )(sJ + B) + kkV (s)taaTETWL ( s)=0G (s) = wm (s)Ra + sLa=2(R+ sL )(sJ + B) + kkT(s)WLaaTEVt (s)=0Chap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function model Neglect the friction term by setting B = 0 and consider the motor without load J = Jm,kT1G (s) =1L JR J(R+ sL) + k
15、ksJ am + s am +1)2k(smaaTEEkkkkTETE Define the following constant,=La= Ra JmElectrical time constantMechanical time ttmconstantekkRTEa Using time constants yields,G (s) = wm (s) =1(s2tt+ st1+1)V (s)ktEmemChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function model In general, tmte . To replac
16、e st m1by s(t m +te ) ,1G (s) = wm (s) =k(s2tt+ stk(st+1)(st1+1)+1)V (s)tEmemEme11w(s)mk(st+1)Em1V (s)(st+1)teChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function model In general, tmte . To replace st m1by s(t m +te ) ,1G (s) = wm (s) =k(s2tt+ stk(st+1)(st1+1)+1)V (s)tEmemEme111w(s)V (s)mk
17、(st+1) (stt+1)EmeChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function modelt e The electrical time constantdetermines how quickly thearmature current builds up in response to a step change DVt in the terminal voltage, where the rotor speed is assumed to be constant.d(Di)Dv= De+ R Di+ Ltaaaa
18、adtDea = kE DwmChap.13DC Motor DrivesDC Servo Drives The mechanical time constant tmdetermines how quicklythe speed builds up in response to a step change DVtin the terminal voltage, provided that the electrical time constant t e is assumed to be negligible and the armature current can change instan
19、taneously.Vt (s)w(s)mk(st+1)EmDvtDw(1- e-t tm )(t)mkEChap.13DC Motor DrivesDC Servo Drives13.5.2 Power electronic converterA power electronic converter supplying a dc motor should have the following capabilities:u The converter should allow both its output voltage and current to reverse in order to
20、realize four-quadrant operation.u The converter should be able to operate in a current- controlled mode by holding the current at its maximum acceptable value during fast acceleration and deceleration.u For accurate control of position, the average voltage output of the converter should vary linearl
21、y with its control input, independent of the load on the motor.u The converter output should respond as quickly as possible to its control input.Chap.13DC Motor DrivesDC Servo Drives13.5.2 Power electronic converter A full-bridge switch-mode dc-dc converter produces a four- quadrant controllable dc
22、output for dc motor drives.= kcVcontrolVtChap.13DC Motor DrivesDC Servo Drives13.5.3 Ripple in the armature current The peak-to-peak ripple in the armature current caused by the switch-mode dc-dc converter impacts on the torque pulsations and heating of the motor.vt (t) = Vt + vr (t)Ripple component
23、s v (t), i (t)tri(t) = I+ i(t)aar The armature circuit equation:dir (t)V+ v (t) = E+ R I+ i (t) + Ltraaaradtdir (t)V= E+ R Iv (t) = R i (t) + Ltaaara radtChap.13DC Motor DrivesDC Servo Drives The ripple current is primarily determined by the armature inductance.dir (t)v(t)Lradt Theripple voltage is
24、maximum when the average outputvoltage is zero and all switches operate at equal duty ratiosPWM bipolar voltage switchingPWM unipolar voltage switchingVdVd(DI=(DI=)p-pmaxp-pmax2Lf8LfasasChap.13DC Motor DrivesDC Servo Drives13.5.4 Control of servo drives The current-limiting circuit operates only whe
25、n the drivecurrent tries to exceed an acceptable limit fast accelerations and decelerations.duringIa,maxNo internal current control loopChap.13DC Motor DrivesDC Servo Drives13.5.4 Control of servo drives To improve the dynamic response in high-performance servo drives, and internal current loop is u
26、sed to control the armature current and torque directly.i* Iaa,maxWith internal current control loopChap.13DC Motor DrivesDC Servo Drives13.5.5 Nonlinearity due to blanking time The blanking time of PWM dc-dc converters causes output voltage errors.Chap.13DC Motor DrivesDC Servo Drives13.5.5 Nonline
27、arity due to blanking time The blanking time of PWM dc-dc converters causes output voltage errors. The effects due to blanking time on the drive performance can be minimized by using the current-controlled mode converters.Chap.13DC Motor DrivesAdjustable-speed DC Drives Unlike servo drives, the resp
28、onse time to speed and torque commands is not as critical in adjustable-speed drives.13.6.1 Switch-mode dc-dc converter= ktf f iaea= kef f wmTem If a four-quadrant operation is needed and a switch-mode converter is utilized, then the full-bridge converter is used.Chap.13DC Motor DrivesAdjustable-spe
29、ed DC Drives13.6.1 Switch-mode dc-dc converter If the speed does not have to reverse but braking is needed, then the two-quadrant converter can be used.= ktf f iaea= kef f wmTemMotoringBrakingTwo-quadrant operationChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.1 Switch-mode dc-dc converter If
30、the speed does not have to reverse but braking is needed, then the two-quadrant converter can be used.= ktf f iaea= kef f wmTemMotoringBrakingTwo-quadrant operationChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.1 Switch-mode dc-dc converter If the speed does not have to reverse but braking is
31、needed, then the two-quadrant converter can be used.= ktf f iaea= kef f wmTemMotoringBrakingTwo-quadrant operationChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.1 Switch-mode dc-dc converter For a single-quadrant operation where the speed remains unidirectional and braking is not required, the
32、 step-down converter can be used.Single-quadrant operationChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converter In large power adjustable-speed dc drives, it may be economical to utilize a line-frequency controlled converter (phase-controlled converter).Chap.13DC
33、 Motor DrivesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converter A disadvantage of the line-frequency converters is the longer response to the speed control signals (due to fire delay angle), compared to high frequency switch-mode dc- dc converters.Chap.13DC Motor DrivesAdjustable-s
34、peed DC Drives13.6.2 Line-frequency controlled converterTwo back-to-back connected thyristorFour-quadrant operationconvertersChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converterTwo back-to-back connected thyristorFour-quadrant operationconvertersOne phase-contro
35、lled converter together with two pairs of contactors.Chap.13DC Motor DrivesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converterTwo back-to-back connected thyristorFour-quadrant operationconvertersOne phase-controlled converter together with two pairs of contactors.Chap.13DC Motor Dri
36、vesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converterTwo back-to-back connected thyristorFour-quadrant operationconvertersOne phase-controlled converter together with two pairs of contactors.Chap.13DC Motor DrivesAdjustable-speed DC Drives13.6.4 Control of adjustable-speed drives A
37、 ddtlimiter allows the speed command to change slowly,thus preventing the rotor current from exceeding its rating.Open-loop speed controlChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.5 Field weakening in adjustable- speed dc motor drivesThe operation higher than the rated speed of the dc moto
38、rcan be realized by reducing the field flux f f.A line-frequencycontrolled converter is normally used to control the field winding.I fthroughChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.6 Power factor of the line current Both the diode rectifier and the phase-controlled rectifiers draw line
39、currents that consist of large harmonics. These harmonics cause the power factor of operation to be poor.Drive capability of dc motorsLine-frequency converter driveFor constant load torque, thisline frequency converter results in a very poor displacement angle at low speeds.Chap.13DC Motor DrivesAdjustable-speed DC Drives13.6.6 Power factor of the line current Both the diode rectifier and the phase-controlled rectifiers draw line currents that consist of large harmonics. These harmonics cause the power factor o
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工费劳务合同
- 摄影师协议书摄影签约合同
- 客栈租赁合同协议书
- 物业管理小区设施采购合同
- 茶艺师练习试题附答案
- 学校商业转让合同范本
- ppp市政项目合同范本
- 供货期限合同范本
- 大楼租赁合同范本简单
- 青蟹供货合同范本
- 2025合伙事业利润分成管理协议
- 【培优卷】同步分层练习:四年级下册语文第26课《宝葫芦的秘密》(含答案)
- 2025年全球及中国包裹接收和追踪软件行业头部企业市场占有率及排名调研报告
- 小学校长学校管理讲座
- 河道水毁清理维护施工合同
- DB32T 4355-2022 建筑施工附着式升降设施安全技术规程(修)
- 农村初级电工培训
- 胸膜反应的应急处理流程
- 2025年国家粮食和物资储备局垂直管理系统事业单位招聘(869人)历年管理单位笔试遴选500模拟题附带答案详解
- 电力拖动自动控制系统试卷带答案
- 肌肉注射护理讲课课件
评论
0/150
提交评论