




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第章 计算机系统概论,第章 系统总线,第章 存储器,第章 输入输出系统,第章 计算机的运算方法,第章 指令系统,第章 CPU 的结构和功能,第章 控制单元的功能,第10章 控制单元的设计,第章 计算机的发展及应用,第章 计算机系统概论,1.1 计算机系统简介,1.4 本书结构,1.3 计算机硬件的主要技术指标,1.2 计算机的基本组成,1.1 计算机系统简介,由具有各类特殊功能 的信息(程序)组成,1. 计算机系统,计算机系统,计算机的实体, 如主机、外设等,一、 计算机的软硬件概念,按任务需要编制成的各种程序,用来管理整个计算机系统,语言处理程序,操作系统,服务性程序,数据库管理系统,网络软
2、件,软 件,1.1,1.1,2. 计算机的解题过程,二、计算机系统的层次结构,高级语言,虚拟机器 M3,汇编语言,虚拟机器 M2,机器语言,实际机器 M1,微指令系统,微程序机器 M0,1.1,用编译程序翻译 成汇编语言程序,用汇编程序翻译 成机器语言程序,用机器语言解释操作系统,用微指令解释机器指令,由硬件直接执行微指令,1.1,程序员所见到的计算机系统的属性 概念性的结构与功能特性,实现计算机体系结构所体现的属性,有无乘法指令,如何实现乘法指令,(指令系统、数据类型、寻址技术、I/O机理),(具体指令的实现),1.1,三、计算机体系结构和计算机组成,1.2 计算机的基本组成,1. 计算机由
3、五大部件组成,3. 指令和数据用二进制表示,4. 指令由操作码和地址码组成,6. 以运算器为中心,5. 存储程序,一、冯诺依曼计算机的特点,5. 存储程序,算术运算 逻辑运算,存放数据 和程序,将信息转换成机 器能识别的形式,将结果转换成 人们熟悉的形式,指挥程序 运行,1.2,冯诺依曼计算机硬件框图,1.2,冯诺依曼计算机硬件框图,二、计算机硬件框图,1.2,1. 以存储器为中心的计算机硬件框图,ALU,主存 辅存,CPU,主机,I/O设备,硬件,CU,2.现代计算机硬件框图,1.2,1.上机前的准备,建立数学模型,编制解题程序,确定计算方法,程序 运算的 全部步骤,指令 每 一个步骤,1.
4、2,三、计算机的工作步骤,取x 至运算器中,乘以x 在运算器中,乘以a 在运算器中,存ax2 在存储器中,取b 至运算器中,乘以x 在运算器中,加ax2 在运算器中,加c 在运算器中,= (ax + b)x + c,取x 至运算器中,乘以a 在运算器中,加b 在运算器中,乘以x 在运算器中,加c 在运算器中,计算 ax2 + bx + c,1.2,编程举例,000001 0000001000,打印 ,停机,取数 ,存数 ,加 ,乘 ,指令格式举例,1.2,1.2,计算 ax2 + bx + c 程序清单,存储体,大楼,存储单元 存放一串二进制代码,存储字 存储单元中二进制代码的组合,存储字长
5、存储单元中二进制代码的位数,每个存储单元赋予一个地址号,按地址寻访, 存储单元, 存储元件,(0/1), 房间, 床位,(无人/ 有人),(1)存储器的基本组成,1.2,2.计算机的解题过程,MAR,MDR,1.2,存储器地址寄存器 反映存储单元的个数,存储器数据寄存器 反映存储字长,(1)存储器的基本组成,(2)运算器的基本组成及操作过程,1.2,被加数,被减数,被除数,乘数,商,加数,减数,被乘数,除数,加法,减法,乘法,除法,和,差,余数, 加法操作过程,1.2,1.2, 减法操作过程,1.2, 乘法操作过程,1.2, 除法操作过程,取指令,分析指令,执行指令,PC,IR,CU,取指,执
6、行,IR 存放当前欲执行的指令,访存,访存,完成 一条 指令,1.2,(3)控制器的基本组成,以取数指令为例,(4)主机完成一条指令的过程,1.2,以存数指令为例,1.2,(4)主机完成一条指令的过程,(5) ax2 + bx + c 程序的运行过程,将程序通过输入设备送至计算机,程序首地址,打印结果,分析指令,取指令,停机,启动程序运行,执行指令,1.2,MAR,M,MDR,IR,PC,CU,OP(IR),Ad(IR),MAR,M,MDR,ACC,PC,1.3 计算机硬件的主要技术指标,1.机器字长,2.运算速度,CPU 一次能处理数据的位数 与 CPU 中的 寄存器位数 有关,主频,221
7、 = 256 KB,3.存储容量,主存容量,辅存容量,存储单元个数 存储字长,字节数,字节数 80 GB,如 MAR MDR 容量,10 8,16 32,存放二进制信息的总位数,1.3,1 K 8位,64 K 32位,第篇 概论,1.4 本书结构,1.4 本书结构,第篇 计算机系统的硬件结构,1.4 本书结构,第篇 CPU,1.4 本书结构,第篇 CU,第章 计算机的发展及应用,2.3 计算机的展望,2.2 计算机的应用,2.1 计算机的发展史,2.1 计算机的发展史,一、计算机的产生和发展,1946年 美国 ENIAC,1955年退役,用手工搬动开关和拔插电缆来编程,世界上第一台电子计算机
8、ENIAC(1946),2.1,硬件技术对计算机更新换代的影响,2.1,第一台von Neumann 系统结构的计算机,2.1,IBM System360,2.1,2.1,1.IBM: BlueGene/L - eServer Blue Gene Solution,212 992 个 CPU 最大平均速度 478 200 GFLOPS,最快的五台超级计算机(截止到 2007.11),2.1,2.IBM: JUGENE - Blue Gene/P Solution,65 536个 CPU 最大平均速度 167 300 GFLOPS,最快的五台超级计算机(截止到 2007.11),3.SGI: S
9、GI Altix ICE 8200,2.1,14 336个 CPU 最大平均速度 126 900 GFLOPS,最快的五台超级计算机(截止到 2007.11),2.1,4. HP : EKA - Cluster Platform 3000 BL460c,14 240个 CPU 最大平均速度 117 900 GFLOPS,最快的五台超级计算机(截止到 2007.11),2.1,最快的五台超级计算机(截止到 2007.11),5. HP : Cluster Platform 3000 BL460c,13 728个 CPU 最大平均速度 102 800 GFLOPS,2.1,最权威的超级计算机排名的
10、参考网址 ,Top 10 june 2010,1.Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz 2.Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU 3.Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband 4.Kraken XT5 - Cray XT5-HE Op
11、teron Six Core 2.6 GHz 5.JUGENE - Blue Gene/P Solution 6.Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon Westmere 2.93 Ghz, Infiniband,Top 10 june 2010,7.Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband 8BlueGene/L - eServer Blue Gene Solution 9Intrepid -
12、Blue Gene/P Solution 10Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband,二、微型计算机的出现和发展,微处理器芯片,存储器芯片,1971年,1970年,2.1,Moore 定律,Intel 公司的缔造者之一 Gordon Moore 提出,2.1,Moore 定律,摩尔定律是指IC上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。摩尔定律是由英特尔(Intel)名誉董事长戈登摩尔(Gordon Moore)经过长期观察发现得之。,Moore 定律,到底什么是“摩尔定律”?归纳起来,主要有
13、以下三种“版本”: 1、集成电路芯片上所集成的电路的数目,每隔18个月就翻一番。 2、微处理器的性能每隔18个月提高一倍,而价格下降一倍。 3、用一个美元所能买到的电脑性能,每隔18个月翻两番。,Intel 公司的典型微处理器产品,8080 8位 1974年 8086 16位 1979年 2.9 万个晶体管 80286 16位 1982年 13.4 万个晶体管 80386 32位 1985年 27.5 万个晶体管 80486 32位 1989年 120.0 万个晶体管 Pentium 64位(准) 1993年 310.0 万个晶体管 Pentium Pro 64位(准) 1995年 550.0
14、 万个晶体管 Pentium 64位(准) 1997年 750.0 万个晶体管 Pentium 64位(准) 1999年 950.0 万个晶体管 Pentium 64位 2000年 4 200.0 万个晶体管,2.1,2007 年 芯片上可集成 3 亿 5 千万 个晶体管,预计2010 年 芯片上可集成 8 亿 个晶体管,三、软件技术的兴起和发展,机器语言 面向机器,汇编语言 面向机器,高级语言 面向问题,FORTRAN 科学计算和工程计算,PASCAL 结构化程序设计,C 面向对象,Java 适应网络环境,1. 各种语言,2.1,2. 系统软件,语言处理程序 汇编程序 编译程序 解释程序,操
15、作系统 DOS UNIX Windows,服务性程序 装配 调试 诊断 排错,数据库管理系统 数据库和数据库管理软件,网络软件,2.1,3. 软件发展的特点, 开发周期长, 制作成本昂贵, 检测软件产品质量的特殊性,2.1,2.2 计算机的应用,一、科学计算和数据处理,二、工业控制和实时控制,三、网络技术,1. 电子商务,2. 网络教育,3. 敏捷制造,四、虚拟现实,五、办公自动化和管理信息系统,六、CAD/CAM/CIMS,七、多媒体技术,八、人工智能,2.2,2.3 计算机的展望,一、计算机具有类似人脑的一些超级 智能功能,要求计算机的速度达1015/秒,二、芯片集成度的提高受以下三方面的
16、限制,芯片集成度受物理极限的制约,按几何级数递增的制作成本,芯片的功耗、散热、线延迟,三、?替代传统的硅芯片,1. 光计算机,2. DNA生物计算机,3. 量子计算机,利用光子取代电子进行运算和存储,通过控制DNA分子间的生化反应,利用原子所具有的量子特性,2.3,第章 系统总线,3.1 总线的基本概念,3.2 总线的分类,3.3 总线特性及性能指标,3.4 总线结构,3.5 总线控制,3.1 总线的基本概念,一、为什么要用总线,二、什么是总线,三、总线上信息的传送,串行,并行,四、总线结构的计算机举例,1. 面向 CPU 的双总线结构框图,中央处理器 CPU,3.1,2. 单总线结构框图,3
17、.1,3. 以存储器为中心的双总线结构框图,主存,3.1,3.2 总线的分类,1.片内总线,2.系统总线,芯片内部 的总线,双向 与机器字长、存储字长有关,单向 与存储地址、 I/O地址有关,有出 有入,计算机各部件之间 的信息传输线,存储器读、存储器写 总线允许、中断确认,中断请求、总线请求,3.通信总线,串行通信总线,并行通信总线,传输方式,3.2,3.3 总线特性及性能指标,一、总线物理实现,3.3 总线特性及性能指标,一、总线物理实现,英特尔( Intel )CPU,Pentium II(奔腾2)正面,Pentium II(奔腾2)侧面,英特尔( Intel )CPU,Pentium
18、III(奔腾3) Slot 1,Pentium III(奔腾3) Socket 370,英特尔( Intel )CPU,Celeron(塞扬)早期产品,Celeron(塞扬)后期产品,Slot 1架构,超微(AMD)CPU,AMD Athlon (速龙),二、总线特性,尺寸、形状、管脚数及排列顺序,传输方向 和有效的 电平 范围,每根传输线的 功能,信号的 时序 关系,3.3,地址 数据 控制,三、总线的性能指标,数据线 的根数,每秒传输的最大字节数(MBps),同步、不同步,地址线 与 数据线 复用,地址线、数据线和控制线的 总和,负载能力,并发、自动、仲裁、逻辑、计数,3.3,ISA EI
19、SA VESA(LV-BUS) PCI AGP RS-232 USB,总 线 标 准,四、总线标准,3.3,3.3,四、总线标准,-AGP-,是在PCI图形接口的基础上发展而来的。AGP规范是英特尔公司解决电脑处理(主要是显示)3D图形能力差的问题而出台的。 完全独立于PCI总线之外,直接把显卡与主板控制芯片联在一起,使得3D图形数据省略了越过PCI总线的过程,从而很好地解决了低带宽PCI接口造成的系统瓶颈问题。 AGP标准分为AGP1.0(AGP 1X和AGP 2X),AGP2.0(AGP 4X),AGP3.0(AGP 8X)。 AGP3.0(AGP8X) 2000年8月,Intel推出AG
20、P3.0规范,工作电压降到0.8V,为了防止用户将非0.8V显卡使用在AGP 0.8V插槽上,Intel专门为AGP 3.0插槽和主板增加了电子ID,可以支持1.5V和0.8V信号电压。并增加了8x模式,这样它的数据传输带宽达到了2133MB/sec,数据传输能力相对于AGP 4X成倍增长,能较好的满足当前显示设备的带宽需求。,不同AGP接口的模式传输方式不同。1X模式的AGP,工作频率达到了PCI总线的两倍66MHz,传输带宽理论上可达到266MB/s。 AGP 2X工作频率同样为66MHz,但是它使用了正负沿(一个时钟周期的上升沿和下降沿)触发的工作方式,在这种触发方式中在一个时钟周期的上
21、升沿和下降沿各传送一次数据,从而使得一个工作周期先后被触发两次,使传输带宽达到了加倍的目的,而这种触发信号的工作频率为133MHz,这样AGP 2X的传输带宽就达到了266MB/s2(触发次数)533MB/s的高度。 AGP 4X仍使用了这种信号触发方式,只是利用两个触发信号在每个时钟周期的下降沿分别引起两次触发,从而达到了在一个时钟周期中触发4次的目的,这样在理论上它就可以达到266MB/s2(单信号触发次数)2(信号个数)1066MB/s的带宽了。,-AGP-,AGP3.0显卡的额定电压为0.81.5V,因此不能把AGP8X的显卡插接到AGP1.0规格的插槽中。这就是说AGP8X规格与旧有
22、的AGP1X/2X模式不兼容。而对于AGP4X系统,AGP8X显卡仍旧在其上工作,但仅会以AGP4X模式工作,无法发挥AGP8X的优势。,-AGP-,-AGP-,-AGP-,-PCI Express插槽-,PCI-Express是最新的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。 它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上 。 PCI Express也有多种规格,从PCI Express 1X到PCI Express 16
23、X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。能支持PCI Express的主要是英特尔的i915和i925系列芯片组。 PCI-E采用了点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI-E的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。,PCI-E的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16,而X2模式将用于内部接口而非插槽模式。
24、PCI-E规格从1条通道连接到32条通道连接,有非常强的伸缩性,以满足不同系统设备对数据传输带宽不同的需求。 用于取代AGP接口的PCI-E接口位宽为X16,能够提供5GB/s的带宽,即便有编码上的损耗但仍能够提供约为4GB/s左右的实际带宽,远远超过AGP 8X的2.1GB/s的带宽。 PCI-E X1和PCI-E X16已成为PCI-E主流规格,同时很多芯片组厂商在南桥芯片当中添加对PCI-E X1的支持,在北桥芯片当中添加对PCI-E X16的支持。 PCI-E也支持高阶电源管理,支持热插拔,支持数据同步传输,为优先传输数据进行带宽优化。,-PCI Express插槽-,-PCI Exp
25、ress插槽-,-PCI Express插槽-,-PCI Express插槽-,3.4 总线结构,一、单总线结构,1. 双总线结构,具有特殊功能的处理器, 由通道对I/O统一管理,二、多总线结构,3.4,2. 三总线结构,3.4,3. 三总线结构的又一形式,3.4,4. 四总线结构,3.4,1. 传统微型机总线结构,三、总线结构举例,3.4,2. VL-BUS局部总线结构,3.4,3. PCI 总线结构,3.4,4. 多层 PCI 总线结构,3.4,pentium主板总线结构,3.5 总线控制,一、总线判优控制,总线判优控制,分布式,集中式,1. 基本概念,链式查询,计数器定时查询,独立请求方
26、式,2. 链式查询方式,3.5,I/O接口1,3. 计数器定时查询方式,I/O接口1,3.5,设备地址,4. 独立请求方式,3.5,二、总线通信控制,1. 目的,2. 总线传输周期,主模块申请,总线仲裁决定,主模块向从模块 给出地址 和 命令,主模块和从模块 交换数据,主模块 撤消有关信息,解决通信双方 协调配合 问题,3.5,由 统一时标 控制数据传送,充分 挖掘 系统 总线每个瞬间 的 潜力,3. 总线通信的四种方式,采用 应答方式 ,没有公共时钟标准,同步、异步结合,3.5,(1) 同步式数据输入,3.5,(2) 同步式数据输出,3.5,不互锁,半互锁,全互锁,(3) 异步通信,3.5,
27、(4) 半同步通信,3.5,(同步、异步 结合),以输入数据为例的半同步通信时序,T1 主模块发地址,T2 主模块发命令,T3 从模块提供数据,T4 从模块撤销数据,主模块撤销命令,3.5,3.5,上述三种通信的共同点,一个总线传输周期(以输入数据为例),主模块发地址 、命令,从模块准备数据,从模块向主模块发数据,总线空闲,3.5,占用总线,不占用总线,占用总线,(5) 分离式通信,充分挖掘系统总线每个瞬间的潜力,一个总线传输周期,子周期1,子周期2,3.5,1. 各模块有权申请占用总线,分离式通信特点,充分提高了总线的有效占用,2. 采用同步方式通信,不等对方回答,3. 各模块准备数据时,不
28、占用总线,4. 总线被占用时,无空闲,3.5,第章 存 储 器,4.1 概述,4.2 主存储器,4.3 高速缓冲存储器,4.4 辅助存储器,4.1 概 述,一、存储器分类,1. 按存储介质分类,(1) 半导体存储器,(2) 磁表面存储器,(3) 磁芯存储器,(4) 光盘存储器,易失,TTL 、MOS,磁头、载磁体,硬磁材料、环状元件,激光、磁光材料,(1) 存取时间与物理地址无关(随机访问),顺序存取存储器 磁带,4.1,2. 按存取方式分类,(2) 存取时间与物理地址有关(串行访问),随机存储器,只读存储器,直接存取存储器 磁盘,在程序的执行过程中 可 读 可 写,在程序的执行过程中 只 读
29、,磁盘、磁带、光盘,高速缓冲存储器(Cache),Flash Memory,存 储 器,3. 按在计算机中的作用分类,4.1,高,小,快,1. 存储器三个主要特性的关系,二、存储器的层次结构,4.1,虚拟存储器,虚地址,逻辑地址,实地址,物理地址,主存储器,4.1,(速度),(容量),4.2 主存储器,一、概述,1. 主存的基本组成,2. 主存和 CPU 的联系,4.2,高位字节 地址为字地址,低位字节 地址为字地址,设地址线 24 根,按 字节 寻址,按 字 寻址,若字长为 16 位,按 字 寻址,若字长为 32 位,3. 主存中存储单元地址的分配,4.2,224 = 16 M,8 M,4
30、M,(2) 存储速度,4. 主存的技术指标,(1) 存储容量,(3) 存储器的带宽,主存 存放二进制代码的总位数,读出时间 写入时间,存储器的 访问时间,读周期 写周期,位/秒,4.2,芯片容量,二、半导体存储芯片简介,1. 半导体存储芯片的基本结构,1K4位,16K1位,8K8位,10,4,14,1,13,8,4.2,片选线,读/写控制线,(低电平写 高电平读),(允许读),4.2,存储芯片片选线的作用,用 16K 1位 的存储芯片组成 64K 8位 的存储器,32片,4.2,2. 半导体存储芯片的译码驱动方式,(1) 线选法,4.2,(2) 重合法,4.2,0,0,三、随机存取存储器 (
31、RAM ),1. 静态 RAM (SRAM),4.2,基本存储元:,是组成存储器的基础和核心,它用来存储一位二进制信息0或1。,六管SRAM存储元是由两个MOS反相器交叉耦合而成的触发器,一个存储元存储一位二进制代码.这种电路有两个稳定的状态,并且 A,B两点的电位总是互为相反的,因此它能表示一位二进制的1和0。,该存储元的读写操作是怎么实现的?,写操作?,写“1”:在I/O线上输入高电位,在I/O线上输入低电位,开启T5,T6,T7,T8四个晶体管把高、低电位分别加在A,B点,使T1管截止,使T2管导通,将“1”写入存储元.,写“0”:在I/O线上输入低电位,在I/O线上输入高电位,打开T5
32、,T6,T7,T8四个开门管把低、高电位分别加在A,B点,使T1管导通,T2管截止,将“0”信息写入了存储元。,该存储元的读写操作是怎么实现的?,读操作?,若某个存储元被选中,则该存储元的T5,T6,T7,T8管均导通,A,B两点与位线D与D相连存储元的信息被送到I/O与I/O线上。I/O与I/O线接着一个差动读出放大器 ,从其电流方向可以判知所存信息是“1”还是“0”。,(2) 静态 RAM 芯片举例, Intel 2114 外特性,存储容量 1K4 位,4.2, Intel 2114 RAM 矩阵 (64 64) 读,4.2,4.2, Intel 2114 RAM 矩阵 (64 64) 读
33、,4.2, Intel 2114 RAM 矩阵 (64 64) 读,4.2, Intel 2114 RAM 矩阵 (64 64) 读,4.2, Intel 2114 RAM 矩阵 (64 64) 读,4.2, Intel 2114 RAM 矩阵 (64 64) 读,15,0,31,16,47,32,63,48,15,0,31,16,47,32,63,48,读写电路,读写电路,读写电路,读写电路,0,1,63,0,15,行,地,址,译,码,列,地,址,译,码,I/O1,I/O2,I/O3,I/O4,WE,CS,0,0,0,0,0,0,0,0,0,0,4.2, Intel 2114 RAM 矩阵
34、(64 64) 读,0,16,32,48,4.2, Intel 2114 RAM 矩阵 (64 64) 读,0,16,32,48,4.2, Intel 2114 RAM 矩阵 (64 64) 读,0,16,32,48,4.2, Intel 2114 RAM 矩阵 (64 64) 写,4.2, Intel 2114 RAM 矩阵 (64 64) 写,4.2, Intel 2114 RAM 矩阵 (64 64) 写,4.2, Intel 2114 RAM 矩阵 (64 64) 写,4.2, Intel 2114 RAM 矩阵 (64 64) 写,4.2, Intel 2114 RAM 矩阵 (64
35、 64) 写,4.2, Intel 2114 RAM 矩阵 (64 64) 写,4.2, Intel 2114 RAM 矩阵 (64 64) 写,4.2, Intel 2114 RAM 矩阵 (64 64) 写,(3) 静态 RAM 读 时序,4.2,(4) 静态 RAM (2114) 写 时序,4.2,2. 动态 RAM ( DRAM ),(1) 动态 RAM 基本单元电路,(1) 动态 RAM 基本单元电路,2. 动态 RAM ( DRAM ),读出与原存信息相反,读出时数据线有电流 为 “1”,写入与输入信息相同,写入时 CS 充电 为 “1” 放电 为 “0”,4.2,T,无电流,有电
36、流,(2) 动态 RAM 芯片举例, 三管动态 RAM 芯片 (Intel 1103) 读,4.2,读 写 控 制 电 路, 三管动态 RAM 芯片 (Intel 1103) 写,4.2,4.2, 三管动态 RAM 芯片 (Intel 1103) 写,4.2, 三管动态 RAM 芯片 (Intel 1103) 写,4.2, 三管动态 RAM 芯片 (Intel 1103) 写,4.2, 三管动态 RAM 芯片 (Intel 1103) 写,4.2, 三管动态 RAM 芯片 (Intel 1103) 写,4.2, 三管动态 RAM 芯片 (Intel 1103) 写,读 写 控 制 电 路,4.
37、2, 三管动态 RAM 芯片 (Intel 1103) 写,读 写 控 制 电 路,4.2, 三管动态 RAM 芯片 (Intel 1103) 写,读 写 控 制 电 路, 单管动态 RAM 4116 (16K 1位) 外特性,4.2, 4116 (16K 1位) 芯片 读 原理,4.2,63,0,0,0, 4116 (16K1位) 芯片 写 原理,4.2,63,0,(3) 动态 RAM 时序,行、列地址分开传送,写时序,数据 DOUT 有效,数据 DIN 有效,读时序,4.2,(4) 动态 RAM 刷新,刷新与行地址有关,“死时间率” 为 128/4 000 100% = 3.2%,“死区”
38、 为 0.5 s 128 = 64 s,4.2,以128 128 矩阵为例,tC = tM + tR,无 “死区”, 分散刷新(存取周期为1 s ),(存取周期为 0.5 s + 0.5 s ),4.2,以 128 128 矩阵为例, 分散刷新与集中刷新相结合(异步刷新),对于 128 128 的存储芯片(存取周期为 0.5 s ),将刷新安排在指令译码阶段,不会出现 “死区”,“死区” 为 0.5 s,若每隔 15.6 s 刷新一行,每行每隔 2 ms 刷新一次,4.2,3. 动态 RAM 和静态 RAM 的比较,存储原理,集成度,芯片引脚,功耗,价格,速度,刷新,4.2,四、只读存储器(R
39、OM),1. 掩模 ROM ( MROM ),行列选择线交叉处有 MOS 管为“1”,行列选择线交叉处无 MOS 管为“0”,2. PROM (一次性编程),4.2,3. EPROM (多次性编程 ),(1) N型沟道浮动栅 MOS 电路,紫外线全部擦洗,4.2,(2) 2716 EPROM 的逻辑图和引脚,4.2,4. EEPROM (多次性编程 ),电可擦写,局部擦写,全部擦写,5. Flash Memory (闪速型存储器),比 EEPROM快,4.2,EPROM,价格便宜 集成度高,EEPROM,电可擦洗重写,具备 RAM 功能,用 1K 4位 存储芯片组成 1K 8位 的存储器,?片
40、,五、存储器与 CPU 的连接,1. 存储器容量的扩展,4.2,2片,(2) 字扩展(增加存储字的数量),用 1K 8位 存储芯片组成 2K 8位 的存储器,4.2,?片,2片,(3) 字、位扩展,用 1K 4位 存储芯片组成 4K 8位 的存储器,4.2,?片,8片,2. 存储器与 CPU 的连接,(1) 地址线的连接,(2) 数据线的连接,(3) 读/写命令线的连接,(4) 片选线的连接,(5) 合理选择存储芯片,(6) 其他 时序、负载,4.2,例4.1 解:,(1) 写出对应的二进制地址码,(2) 确定芯片的数量及类型,A15A14A13 A11 A10 A7 A4 A3 A0,4.2
41、,(3) 分配地址线,A10 A0 接 2K 8位 ROM 的地址线,A9 A0 接 1K 4位 RAM 的地址线,(4) 确定片选信号,4.2,例 4.1 CPU 与存储器的连接图,4.2,(1) 写出对应的二进制地址码,(2) 确定芯片的数量及类型,(3) 分配地址线,(4) 确定片选信号,1片 4K 8位 ROM 2片 4K 8位 RAM,A11 A0 接 ROM 和 RAM 的地址线,4.2,用 138 译码器及其他门电路(门电路自定)画出 CPU和 2764 的连接图。要求地址为 F0000HFFFFFH , 并 写出每片 2764 的地址范围。,4.2,六、存储器的校验,编码的纠错
42、 、检错能力与编码的最小距离有关,L 编码的最小距离,D 检测错误的位数,C 纠正错误的位数,汉明码是具有一位纠错能力的编码,4.2,1 . 编码的最小距离,任意两组合法代码之间 二进制位数 的 最少差异,汉明码的组成需增添 ?位检测位,检测位的位置 ?,检测位的取值 ?,2k n + k + 1,检测位的取值与该位所在的检测“小组” 中 承担的奇偶校验任务有关,组成汉明码的三要素,4.2,2 . 汉明码的组成,各检测位 Ci 所承担的检测小组为,gi 小组独占第 2i1 位,gi 和 gj 小组共同占第 2i1 + 2j1 位,gi、gj 和 gl 小组共同占第 2i1 + 2j1 + 2l
43、1 位,4.2,例4.4,求 0101 按 “偶校验” 配置的汉明码,解:, n = 4,根据 2k n + k + 1,得 k = 3,汉明码排序如下:,C1 C2 C4,0, 0101 的汉明码为 0100101,4.2,1,0,按配偶原则配置 0011 的汉明码,C1 C2 C4,1 0 0,解:, n = 4 根据 2k n + k + 1,取 k = 3, 0011 的汉明码为 1000011,练习1,4.2,3. 汉明码的纠错过程,形成新的检测位 Pi ,,如增添 3 位 (k = 3),,新的检测位为 P4 P2 P1 。,以 k = 3 为例,Pi 的取值为,对于按 “偶校验”
44、 配置的汉明码,不出错时 P1= 0,P2 = 0,P4 = 0,C1,C2,C4,其位数与增添的检测位有关,,4.2,无错,有错,有错,P4P2P1 = 110,第 6 位出错,可纠正为 0100101, 故要求传送的信息为 0101。,纠错过程如下,例4.5,解:,4.2,练习2, P4 P2 P1 = 100,第 4 位错,可不纠,配奇的汉明码为 0101011,4.2,七、提高访存速度的措施,采用高速器件,调整主存结构,1. 单体多字系统,采用层次结构 Cache 主存,增加存储器的带宽,4.2,2. 多体并行系统,(1) 高位交叉,4.2,顺序编址,各个体并行工作,4.2,体号,(1
45、) 高位交叉,4.2,(2) 低位交叉,各个体轮流编址,4.2,体号,(2) 低位交叉 各个体轮流编址,低位交叉的特点,在不改变存取周期的前提下,增加存储器的带宽,4.2,启动存储体 0,启动存储体 1,启动存储体 2,启动存储体 3,4.2,设四体低位交叉存储器,存取周期为T,总线传输周期为,为实现流水线方式存取,应满足 T 4。,连续读取 4 个字所需的时间为 T(4 1),(3) 存储器控制部件(简称存控),易发生代码 丢失的请求源,优先级 最高,严重影响 CPU 工作的请求源, 给予 次高 优先级,4.2,4.2,3.高性能存储芯片,(1) SDRAM (同步 DRAM),在系统时钟的
46、控制下进行读出和写入 CPU 无须等待,(2) RDRAM,由 Rambus 开发,主要解决 存储器带宽 问题,(3) 带 Cache 的 DRAM,在 DRAM 的芯片内 集成 了一个由 SRAM 组成的 Cache ,有利于 猝发式读取,4.3 高速缓冲存储器,一、概述,1. 问题的提出,避免 CPU “空等” 现象,CPU 和主存(DRAM)的速度差异,容量小 速度高,容量大 速度低,程序访问的局部性原理,2. Cache 的工作原理,(1) 主存和缓存的编址,主存和缓存按块存储 块的大小相同,B 为块长,4.3,(2) 命中与未命中,M C,主存块 调入 缓存,主存块与缓存块 建立 了
47、对应关系,用 标记记录 与某缓存块建立了对应关系的 主存块号,主存块与缓存块 未建立 对应关系,主存块 未调入 缓存,4.3,(3) Cache 的命中率,CPU 欲访问的信息在 Cache 中的 比率,命中率 与 Cache 的 容量 与 块长 有关,一般每块可取 4 8 个字,块长取一个存取周期内从主存调出的信息长度,CRAY_1 16体交叉 块长取 16 个存储字,IBM 370/168 4体交叉 块长取 4 个存储字,(64位4 = 256位),4.3,(4) Cache 主存系统的效率,效率 e 与 命中率 有关,设 Cache 命中率 为 h,访问 Cache 的时间为 tc ,
48、访问 主存 的时间为 tm,4.3,3. Cache 的基本结构,4.3,Cache 替换机构,Cache 存储体,主存Cache 地址映射 变换机构,由CPU完成,以块为单位与主存交换信息,主存采用多体结构,优先级最高,将cpu送来的主存地址转换为cache地址,主要是主存块号与cache块号之间的转换,替换算法,4. Cache 的 读写 操作,读,4.3,Cache 和主存的一致性,4.3,写直达法(Write through),写回法(Write back),写操作时数据既写入Cache又写入主存,写操作时只把数据写入 Cache 而不写入主存 当 Cache 数据被替换出去时才写回主
49、存,写操作时间就是访问主存的时间,读操作时不 涉及对主存的写操作,更新策略比较容易实现,写操作时间就是访问 Cache 的时间, 读操作 Cache 失效发生数据替换时, 被替换的块需写回主存,增加了 Cache 的复杂性,5. Cache 的改进,(1) 增加 Cache 的级数,片载(片内)Cache,片外 Cache,(2) 统一缓存和分立缓存,指令 Cache,数据 Cache,与主存结构有关,与指令执行的控制方式有关,是否流水,Pentium 8K 指令 Cache 8K 数据 Cache,PowerPC620 32K 指令 Cache 32K 数据 Cache,4.3,二、Cach
50、e 主存的地址映射,1. 直接映射,每个缓存块 i 可以和 若干 个 主存块 对应,每个主存块 j 只能和 一 个 缓存块 对应,i = j mod C,4.3,2. 全相联映射,主存 中的 任一块 可以映射到 缓存 中的 任一块,4.3,某一主存块 j 按模 Q 映射到 缓存 的第 i 组中的 任一块,i = j mod Q,3. 组相联映射,4.3,高速缓冲存储器,直接映象: 假设主存空间被分为2m 个页,其页号分别为0、1、.i.2m -1,每页大小为2b 个字,Cache存储空间被分为2c个页(页号为0、1、.j.2c-1),每页大小同样为2b 个字,( c m) (A)直接映象函数定
51、义:j=i mod 2 c 其中j是Cache的页面号,i是主存的页面号。显然,主存的第0页、 2c 页、2c+1 .只能映象到Cache的第0块(共2t 个页)。主存的第1页,第2c 1页,.(共2t 个页)只能映象到Cache的第1页.其中,图中的主存页面标记(t位)用来表明主存对应同一Cache页面的2t 个页面中,究竟是哪一个页面存放到Cache中。 (B)主存地址:最后b 位是页内地址,中间c位是Cache的页面地址,高t(=m-c)位是主存的页面标记,用来标明主存的2t 个页面中究竟哪个页面已在Cache中。,高速缓冲存储器,组相联映象方式 (A)将Cache分为2n 个组,每组包
52、含2r 个页面,Cache共有2c =2n+r 个页面。其映象关系为:j=(i mod 2 n )2r k (0k2r-1) 例,设n=3位,r=1位,考虑主存字块15可映象到Cache的哪一个字块中。 根据公式,可得: j=(i mod 2 n )2 r k =(15 mod 2 3)2 1k =72+k =14+k 又因为 0k2 r -1=1,所以 :k=0或1 代如后得j=14(k=0)或15(k=1)。所以主存模块15可映象到Cache字块14或15。在第7组。 (B)组间是直接映象,组内是全相联映象。 小结:上述三种映象技术有一定的内在联系:当r0时,就是直接映象;当rc时,就是全
53、相联映象。,三、替换算法,1. 先进先出 ( FIFO )算法,2. 近期最少使用( LRU)算法,小结,某一 主存块 只能固定 映射到 某一 缓存块,某一 主存块 能 映射到 任一 缓存块,某一 主存块 只能 映射到 某一 缓存 组 中的 任一块,不灵活,成本高,4.3,4.4 辅助存储器,一、概述,1. 特点,不直接与 CPU 交换信息,2. 磁表面存储器的技术指标,C = n k s,寻道时间 + 等待时间,辅存的速度,Dr = Db V,出错信息位数与读出信息的总位数之比,二、磁记录原理和记录方式,1. 磁记录原理,写,4.4,4.4,读,1. 磁记录原理,2. 磁表面存储器的记录方式
54、,4.4,例 NRZ1 的读出代码波形,4.4,三、硬磁盘存储器,1. 硬磁盘存储器的类型,(1) 固定磁头和移动磁头,(2) 可换盘和固定盘,2. 硬磁盘存储器结构,4.4,(1) 磁盘驱动器,4.4,(2) 磁盘控制器,接收主机发来的命令,转换成磁盘驱动器的控制命令,实现主机和驱动器之间的数据格式转换,控制磁盘驱动器读写,通过总线,(3) 盘片,由硬质铝合金材料制成,4.4,四、软磁盘存储器,1. 概述,速度,磁头,盘片,价格,环境,苛刻,4.4,2. 软盘片,由聚酯薄膜制成,4.4,五、光盘存储器,1. 概述,采用光存储技术,采用非磁性介质,采用磁性介质,不可擦写,可擦写,2. 光盘的存
55、储原理,只读型和只写一次型,可擦写光盘,热作用(物理或化学变化),热磁效应,4.4,利用激光写入和读出,第章 输入输出系统,5.6 DMA方式,5.5 程序中断方式,5.4 程序查询方式,5.3 I/O接口,5.2 外部设备,5.1 概述,5.1 概 述,一、输入输出系统的发展概况,1. 早期,分散连接,CPU 和 I/O设备 串行 工作,程序查询方式,2. 接口模块和 DMA 阶段,总线连接,CPU 和 I/O设备 并行 工作,3. 具有通道结构的阶段,4. 具有 I/O 处理机的阶段,中断方式,DMA 方式,二、输入输出系统的组成,1. I/O 软件,CPU 指令的一部分,通道自身的指令,
56、指出数组的首地址、传送字数、操作命令,如 IBM/370 通道指令为 64 位,2. I/O 硬件,设备,I/O 接口,设备,设备控制器,通道,5.1,三、I/O 设备与主机的联系方式,1. I/O 设备编址方式,(1) 统一编址,(2) 不统一编址,用取数、存数指令,有专门的 I/O 指令,2. 设备选址,用设备选择电路识别是否被选中,3. 传送方式,(1) 串行,(2) 并行,5.1,4. 联络方式,(1) 立即响应,(2) 异步工作采用应答信号,(3) 同步工作采用同步时标,5.1,并行,串行,5. I/O 设备与主机的连接方式,(1) 辐射式连接,(2) 总线连接,不便于增删设备,5.1,便于增删设备,四、I/O设备与主机信息传送的控制方式,1. 程序查询方式,CPU 和 I/O 串行工作,踏步等待,5.1,2. 程序中断方式,I/O 工作,CPU 不查询,CPU 暂停现行程序,CPU 和 I/O 并行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五三方借款及保证协议
- 临时工程合同样本
- 个人木炭售卖合同样本
- 劳动派遣用工合同范例
- 亲子超市采购合同样本
- 专利权质押合同二零二五年
- 二零二五公司自然人借款合同
- 个人购车借款合同样本
- 统编版语文四年级上册第五单元教学设计
- 中医馆改造合同标准文本
- 2023公路桥梁钢结构防腐涂装技术条件
- (13)-2.7科学把握理想与现实的辩证统一
- Unit5Poems单元分析讲义高中英语人教版选择性
- 260吨汽车吊地基承载力验算
- 青岛版六年级数学上册 (完美的图形)教学课件(第1课时)
- 2022新能源光伏发电工程竣工决算报告模板
- 2023超星尔雅《创新创业》答案
- 110kV变电站短路电流计算书
- 船舶带缆知识学习
- 2023年湖北省武汉市中考英语真题(含答案)
- 全面地476种食物升糖指数一览表
评论
0/150
提交评论