离散数学课后习题.doc_第1页
离散数学课后习题.doc_第2页
离散数学课后习题.doc_第3页
离散数学课后习题.doc_第4页
离散数学课后习题.doc_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=QP (2)Q=PQ (3)P=PQ (4)P(PQ)=P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(PQ)(QR) (2)P(QQ) (3)(PQ)P (4)P(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=PQ (2) PQ=P (3) PQ=PQ (4)P(PQ)=Q (5) (PQ)=P (6) P(PQ)=P答:(2),(3),(4),(5),(6)4、公式x(A(x)B(y,x) $z C(y,z)D(x)中,自由变元是( ),约束变元是( )。答

2、:x,y, x,z5、判断下列语句是不是命题。若是,给出命题的真值。( )(1) 北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。(3) 你喜欢唱歌吗? (4) 若7+818,则三角形有4条边。(5) 前进! (6) 给我一杯水吧! 答:(1) 是,T (2) 是,F (3) 不是(4) 是,T (5) 不是 (6) 不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。(1)只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3)当且仅当我

3、生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) (2) (3) (4)8、设个体域为整数集,则下列公式的意义是( )。(1) x$y(x+y=0) (2) $yx(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) x$y (xy=y)()(2) $xy(x+y=y)()(3) $xy(x+y=x) ()(4) x$y(y=2x) ()答:(1) F (2) F (3)F (4)T11、命题“2是偶数或-3是负数”的否定是( )。答:2不是偶数且-3不是负数。12、永真式

4、的否定是( )(1) 永真式(2) 永假式(3) 可满足式(4) (1)-(3)均有可能答:(2)13、公式(PQ)(PQ)化简为( ),公式 Q(P(PQ)可化简为( )。答:P ,QP15、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为( )。答:x(R(x)Q(x)(二元关系部分)28、设1,2,3,4,5,6,B=1,2,3,从到B的关系x,y|x=y2,求(1)R (2) R-1 。答:(1)R=, (2) R=,29、举出集合A上的既是等价关系又是偏序关系的一个例子。()答:A上的恒等关系30、集合A上的等价关系的三个性质是什么?( )答

5、:自反性、对称性和传递性31、集合A上的偏序关系的三个性质是什么?( )答:自反性、反对称性和传递性32、设S=,,上的关系1,2,2,1,2,3,3,4求(1)RR (2) R-1 。答:RR =1,1,1,3,2,2,2,4R-1 =2,1,1,2,3,2,4,333、设1,2,3,4,5,6,是A上的整除关系,求R= ()。答:R=,34、设1,2,3,4,5,6,B=1,2,3,从到B的关系x,y|x=2y,求(1)R (2) R-1 。答:(1)R=, (2) R=,(3,635、设1,2,3,4,5,6,B=1,2,3,从到B的关系x,y|x=y2,求R和R-1的关系矩阵。答:R的

6、关系矩阵= R的关系矩阵=36、集合A=1,2,10上的关系R=|x+y=10,x,yA,则R 的性质为( )。(1) 自反的(2) 对称的 (3) 传递的,对称的 (4) 传递的答:(2)(代数结构部分)37、设A=2,4,6,A上的二元运算*定义为:a*b=maxa,b,则在独异点中,单位元是( ),零元是( )。答:2,638、设A=3,6,9,A上的二元运算*定义为:a*b=mina,b,则在独异点中,单位元是( ),零元是( );答:9,3(半群与群部分)39、设G,*是一个群,则(1) 若a,b,xG,ax=b,则x=( );(2) 若a,b,xG,ax=ab,则x=( )。答:

7、(1) ab (2) b40、设a是12阶群的生成元, 则a2是( )阶元素,a3是( )阶元素。答: 6,441、代数系统是一个群,则G的等幂元是()。答:单位元42、设a是10阶群的生成元, 则a4是( )阶元素,a3是( )阶元素。答:5,1043、群的等幂元是(),有()个。答:单位元,144、素数阶群一定是( )群, 它的生成元是( )。答:循环群,任一非单位元45、设G,*是一个群,a,b,cG,则(1) 若ca=b,则c=( );(2) 若ca=ba,则c=( )。答:(1) b (2) b46、是的子群的充分必要条件是( )。答:是群 或 a,b G, abH,a-1H 或 a

8、,b G,ab-1H 47、群A,*的等幂元有()个,是(),零元有()个。答:1,单位元,048、在一个群G,*中,若G中的元素a的阶是k,则a-1的阶是( )。答:k49、在自然数集N上,下列哪种运算是可结合的?( ) (1) a*b=a-b(2) a*b=maxa,b(3) a*b=a+2b(4) a*b=|a-b|答:(2)50、任意一个具有2个或以上元的半群,它( )。(1) 不可能是群(2) 不一定是群(3) 一定是群 (4) 是交换群答:(1)51、6阶有限群的任何子群一定不是( )。(1) 2阶(2) 3 阶 (3) 4 阶 (4) 6 阶答:(3)(数理逻辑部分)二、求下列各

9、公式的主析取范式和主合取范式: 1、(PQ)R 解:(PQ)R(PQ )R(PR)(QR) (析取范式)(P(QQ)R)(PP)QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)(PQ)R)(PQR)(PQR)(PQR) (PQR)( PQR)(原公式否定的主析取范式)(PQ)R(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)2、(PR)(QR)P 解: (PR)(QR)P(析取范式)(P(QQ)R)(PP)QR)(P(QQ)(RR)(PQR)(PQR)(PQR)(PQR)( PQR)( PQR)(PQR)(PQR) (PQR)(PQR)

10、(PQR)(PQR) (PQR)(PQR) (主析取范式)((PR)(QR)P)(PQR)(PQR)(原公式否定的主析取范式)(PR)(QR)P (PQR)(PQR)(主合取范式)3、(PQ)(RP)解:(PQ)(RP)(PQ)(RP)(合取范式)(PQ(RR)(P(QQ)R)(PQR)(PQR)(PQR)(PQR) (PQR)(PQR)(PQR)(主合取范式) (PQ)(RP)(PQR)(PQR)(PQR)(PQR)(PQR)(原公式否定的主合取范式)(PQ)(RP)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)4、Q(PR) 解:Q(PR)QPR(主合取范式)(Q(PR)

11、)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(原公式否定的主合取范式)Q(PR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)5、P(P(QP) 解:P(P(QP)P(P(QP)PP T (主合取范式)(PQ)(PQ)(PQ)(PQ)(主析取范式)6、(PQ)(RP)解: (PQ)(RP)(PQ)(RP)(PQ)(RP)(析取范式)(PQ(RR)(P(QQ)R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)(PQ)(RP)(PQR)(PQR)(PQR)(PQR)(PQR)(原公式否定的主析取

12、范式)(PQ)(RP)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)7、P(PQ) 解:P(PQ)P(PQ)(PP)QT(主合取范式)(PQ)(PQ)(PQ)(PQ)(主析取范式)8、(RQ)P解:(RQ)P(RQ )P(RP)(QP) (析取范式)(R(QQ)P)(RR)QP)(RQP)(RQP)(RQP)(RQP)(PQR)(PQR)(PQR)(主析取范式)(RQ)P)(PQR)(PQR)(PQR) (PQR)(PQR)(原公式否定的主析取范式)(RQ)P(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)9、PQ 解:PQPQ(主合取范式)(P(QQ)(PP

13、)Q)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(主析取范式)10、PQ 解: PQ (主合取范式)(P(QQ)(PP)Q)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(主析取范式)11、PQ解:PQ(主析取范式)(P(QQ)(PP)Q)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(主合取范式)12、(PR)Q解:(PR)Q(PR)Q(PR)Q(PQ)(RQ)(合取范式)(PQ(RR)(PP)QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)(PR)Q (PQR)(PQR)(P

14、QR)(PQR)(PQR) (原公式否定的主析取范式)(PR)Q(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)13、(PQ)R解:(PQ)R(PQ)R(PQ)R(析取范式)(PQ(RR)(PP)(QQ)R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)(PQ)R(PQ)R(PQ)R(析取范式)(PR)(QR)(合取范式)(P(QQ)R)(PP)QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)14、(P(QR)(P(QR)解:(P(QR)(P(QR)(P(QR

15、)(P(QR)(PQ)(PR)(PQ)(PR)(合取范式)(PQ(RR)(P(QQ)R)(PQ(RR)(P(QQ)R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)(P(QR)(P(QR)(PQR)(PQR)(原公式否定的主合取范式)(P(QR)(P(QR)(PQR)(PQR)(主析取范式)15、P(P(Q(QR)解:P(P(Q(QR) P(P(Q(QR) PQR(主合取范式)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(原公式否定的主合取范式)(PQ

16、R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)16、(PQ)(PR)解、(PQ)(PR)(PQ)(PR) (合取范式)(PQ(RR)(P(QQ)R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)(PQ)(PR)(PQ)(PR)P(QR)(合取范式)(P(QQ)(RR)(PP)QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)三、证明:1、PQ,QR,R,SP=S证明:(1) R 前提(2) QR 前提(3) Q (1),(2)(4) P

17、Q 前提(5) P (3),(4)(6) SP 前提(7) S (5),(6)2、A(BC),C(DE),F(DE),A=BF证明: (1) A 前提(2) A(BC) 前提 (3) BC (1),(2)(4) B 附加前提(5) C (3),(4)(6) C(DE) 前提(7) DE (5),(6)(8) F(DE) 前提(9) F (7),(8)(10) BF CP 3、PQ, PR, QS = RS证明:(1) R 附加前提(2) PR 前提(3) P (1),(2)(4) PQ 前提(5) Q (3),(4)(6) QS 前提(7) S (5),(6)(8) RS CP,(1),(8)

18、4、(PQ)(RS),(QW)(SX),(WX),PR = P证明: (1) P 假设前提(2) PR 前提(3) R (1),(2)(4) (PQ)(RS) 前提(5) PQ (4)(6) RS (5)(7) Q (1),(5)(8) S (3),(6)(9) (QW)(SX) 前提(10) QW (9)(11) SX (10)(12) W (7),(10)(13) X (8),(11)(14) WX (12),(13)(15) (WX) 前提(16) (WX)(WX) (14),(15)5、(UV)(MN), UP, P(QS),QS =M 证明:(1) QS 附加前提(2) P(QS)

19、前提 (3) P (1),(2)(4) UP 前提(5) U (3),(4)(6) UV (5)(7) (UV)(MN) 前提 (8) MN (6),(7)(9) M (8)6、BD,(EF)D,E=B证明:(1) B 附加前提(2) BD 前提 (3) D (1),(2)(4) (EF)D 前提(5) (EF) (3),(4)(6) EF (5)(7) E (6)(8) E 前提(9) EE (7),(8)7、P(QR),R(QS) = P(QS)证明:(1) P 附加前提(2) Q 附加前提(3) P(QR) 前提(4) QR (1),(3)(5) R (2),(4)(6) R(QS) 前

20、提(7) QS (5),(6)(8) S (2),(7)(9) QS CP,(2),(8)(10) P(QS) CP,(1),(9)8、PQ,PR,RS =SQ 证明:(1) S 附加前提(2) RS 前提(3) R (1),(2)(4) PR 前提(5) P (3),(4)(6) PQ 前提(7) Q (5),(6)(8) SQ CP,(1),(7)9、P(QR) = (PQ)(PR)证明:(1) PQ 附加前提(2) P 附加前提(3) Q (1),(2)(4) P(QR) 前提(5) QR (2),(4)(6) R (3),(5)(7) PR CP,(2),(6)(8) (PQ) (PR

21、) CP,(1),(7)10、P(QR),QP,SR,P =S证明:(1) P 前提(2) P(QR) 前提(3) QR (1),(2)(4) QP 前提(5) Q (1),(4)(6) R (3),(5)(7) SR 前提(8) S (6),(7)11、A,AB, AC, B(DC) = D证明:(1) A 前提(2) AB 前提(3) B (1),(2)(4) AC 前提(5) C (1),(4)(6) B(DC) 前提(7) DC (3),(6)(8) D (5),(7)12、A(CB),BA,DC = AD证明:(1) A 附加前提(2) A(CB) 前提 (3) CB (1),(2)

22、(4) BA 前提(5) B (1),(4)(6) C (3),(5)(7) DC 前提(8) D (6),(7)(9) AD CP,(1),(8)13、(PQ)(RQ) (PR)Q证明、(PQ)(RQ) (PQ)(RQ)(PR)Q (PR)Q(PR)Q14、P(QP)P(PQ)证明、P(QP)P(QP)(P)(PQ)P(PQ)15、(PQ)(PR),(QR),SPS证明、(1) (PQ)(PR) 前提 (2) P (QR) (1) (3) (QR) 前提 (4) P (2),(3) (5) SP 前提 (6) S (4),(5)16、PQ,QR,RS P证明、(1) P 附加前提 (2) P

23、Q 前提 (3) Q (1),(2) (4) QR 前提 (5) R (3),(4) (6 ) RS 前提 (7) R (6) (8) RR (5),(7)17、用真值表法证明 ()()证明、列出两个公式的真值表:P Q PQ (PQ)(QP) F FF TT FT TT TF FF FT T由定义可知,这两个公式是等价的。18、PQP(PQ)证明、设P(PQ)为F,则P为T,PQ为F。所以P为T,Q为F ,从而PQ也为F。所以PQP(PQ)。19、用先求主范式的方法证明(PQ)(PR) (P(QR)证明、先求出左右两个公式 的主合取范式(PQ)(PR) (PQ)(PR) (PQ(RR)(P(

24、QQ)R) (PQR)(PQR)(PQR)(PQR) (PQR)(PQR)(PQR) (P(QR)) (P(QR)) (PQ)(PR)(PQ(RR)(P(QQ)R) (PQR)(PQR)(PQR)(PQR) (PQR)(PQR)(PQR)它们有一样的主合取范式,所以它们等价。20、(PQ)(QR) P证明、设(PQ)(QR)为T,则PQ和(QR)都为T。即PQ和QR都为T。故PQ,Q和R)都为T,即PQ为T,Q和R都为F。从而P也为F,即P为T。从而(PQ)(QR) P21、为庆祝九七香港回归祖国,四支足球队进行比赛,已知情况如下,问结论是否有效?前提: (1) 若A队得第一,则B队或C队获亚

25、军;(2) 若C队获亚军,则A队不能获冠军;(3) 若D队获亚军,则B队不能获亚军;(4) A 队获第一;结论: (5) D队不是亚军。证明、设A:A队得第一;B: B队获亚军;C: C队获亚军;D: D队获亚军;则前提符号化为A(BC),CA,DB,A;结论符号化为 D。 本题即证明 A(BC),CA,DB,AD。(1) A 前提 (2) A(BC)前提 (3) BC (1),(2) (4) CA 前提 (5) C (1),(4) (6) B (3),(5) (7) DB 前提 (8) D (6),(7)22、用推理规则证明PQ, (QR),PR不能同时为真。证明、 (1) PR 前提 (2

26、) P (1) (3) PQ 前提 (4) Q (2),(3) (5) (QR) 前提 (6) QR (5) (7) Q (6) (8) QQ (4),(7)(7) 证明或解答:(数理逻辑、集合论与二元关系部分)3、列出下列二元关系的所有元素:(1)A=0,1,2,B=0,2,4,R=|x,y;(2)A=1,2,3,4,5,B=1,2,R=|2x+y4且x且yB;(3)A=1,2,3,B=-3,-2,-1,0,1,R=|x|=|y|且x且yB;解:(1) R=,(2) R=,;(3) R=,。4、对任意集合A,B,证明:若AA=BB,则B=A。证明:若B=,则BB=。从而AA =。故A=。从而

27、B=A。 若B,则BB。从而AA。对, BB。因为AA=BB,则A。从而xA。故BA。同理可证,AB。故B=A。5、对任意集合A,B,证明:若A,AB=AC,则B=C。证明:若B=,则AB=。从而AC =。因为A,所以C=。即B=C。 若B,则AB。从而AC。对,因为A,所以存在yA, 使B。因为AB=AC,则C。从而xC。故BC。同理可证,CB。故B=C。6、设A=a,b, B=c。求下列集合:(1) A0,1B; (2) B2A;(3) (AB)2; (4) P(A)A。解:(1) A0,1B=,;(2) B2A=,;(3) (AB)2=,;(4) P(A)A=,。7、设全集U=a,b,c

28、,d,e, A=a,d, B=a,b,c, C=b,d。求下列各集合:(1)AB; (2);(3)(A)C; (4)P(A)-P(B); (5)(A-B)(B-C); (6)(AB)C; 解 :(1) AB=a; (2) =a,b,c,d,e;(3) (A)C=b,d; (4) P(A)-P(B)=d,a,d;(5) (A-B)(B-C)=d,c,a; (6) (AB) C=b,d。8、设A,B,C是任意集合,证明或否定下列断言:(1)若AB,且BC,则AC;(2)若AB,且BC,则AC;(3)若AB,且BC,则AC;(4)若AB,且BC,则AC;证明:(1) 成立。对xA, 因为AB,所以x

29、B。又因为BC,所以xC。即AC。(2) 不成立。反例如下:A=a, B=a,b,C=a,b,c。虽然AB,且BC,但AC。(3) 不成立。反例如下:A=a, B=a,b,C=a,b,c。虽然AB,且BC,但AC。(4) 成立。因为AB, 且BC,所以AC。9、A上的任一良序关系一定是A上的全序关系。证明:a,bA,则a,b是A的一个非空子集。是A上的良序关系,a,b有最小元。若最小元为a,则ab;否则ba。从而为A上的的全序关系。10、若R和S都是非空集A上的等价关系,则RS是A上的等价关系。证明:aA,因为R和S都是A上的等价关系,所以xRx且xSx。故xRSx。从而RS是自反的。a,bA

30、,aRSb,即aRb且aSb。因为R和S都是A上的等价关系,所以bRa且bSa。故bRSa。从而RS是对称的。a,b,cA,aRSb且bRSc,即aRb,aSb,bRc且bSc。因为R和S都是A上的等价关系,所以aRc且aSc。故aRSc。从而RS是传递的。故RS是A上的等价关系。11、设RAA,则R自反 IAR。证明:xA,R是自反的,xRx。即R,故IAR。xA,IAR,R。即xRx,故R是自反的。12、设A是集合,RAA,则R是对称的RR1。证明:R ,R是对称的,yRx。即R,故R_1 。从而RR-1。反之R-1,即R 。R是对称的,yRx。即R, R_1R。故R=R-1。x,yA,若

31、R ,即R-1。 R=R-1,R。即yRx,故R是对称的。13、设A,B,C和D均是集合,RAB,SBC,TCD,则(1)R(ST)=(RS)(RT);(2)R(ST)(RS)(RT);证明:(1)R(ST),则由合成关系的定义知yB,使得R且ST。从而R且S或R且T,即RS或RT。故(RS)(RT) 。从而R(ST)(RS)(RT)。同理可证(RS)(RT)R(ST)。故R(ST)=(RS)(RT)。(2) R(ST),则由合成关系的定义知yB,使得R且ST。从而R且S且T,即RS且RT。故(RS)(RT) 。从而R(ST)(RS)(RT)。14、设A,为偏序集,BA,若B有最大(小)元、上

32、(下)确界,则它们是惟一的。证明: 设a,b都是B的最大元,则由最大元的定义ab,ba。是A上的偏序关系,a=b。即B如果有最大元则它是惟一的。15、设A=1,2,3,写出下列图示关系的关系矩阵,并讨论它们的性质: 1 1 12 3 2 3 2 3解:(1)R=,;MR=;它是反自反的、反对称的、传递的;(2)R=,;MR=;它是反自反的、对称的;(3)R=,;MR=;它既不是自反的、反自反的、也不是对称的、反对称的、传递的。16、设A=1,2,10。下列哪个是A的划分?若是划分,则它们诱导的等价关系是什么?(1)B=1,3,6,2,8,10,4,5,7;(2)C=1,5,7,2,4,8,9,

33、3,5,6,10;(3)D=1,2,7,3,5,10,4,6,8,9解:(1)和(2)都不是A的划分。(3)是A的划分。其诱导的等价关系是I,。17、R是A=1,2,3,4,5,6上的等价关系,R=I,求R诱导的划分。解:R诱导的划分为1,5,2,4,3,6。18、A上的偏序关系的Hasse图如下。(11) 下列哪些关系式成立:ab,ba,ce,ef,df,cf;(12) 分别求出下列集合关于的极大(小)元、最大(小)元、上(下)界及上(下)确界(若存在的话):(a) A; (b) b,d; (c) b,e; (d) b,d,e a e f b d c解:(1) ba,ce,df,cf成立;(

34、2) (a)的极大元为a,e,f,极小元为c;无最大元,c是最小元;无上界,下界是c;无上确界,下确界是c。(b)的极大元为b,d,极小元为b,d;无最大元和最小元; 上界是e,下界是c;上确界是e,下确界是c。(c)的极大元为e,极小元为b;最大元是e,b是最小元;上界是e,下界是b;上确界是e,下确界是b。(d)的极大元为e,极小元为b,d;最大元是e,无最小元;上界是e,下界是c;上确界是e,下确界是c。(半群与群部分)19、求循环群C12=e,a,a2,a11中H=e,a4,a8的所有右陪集。解: 因为|C12|=12,|H|=3,所以H 的不同右陪集有4 个:H,a,a5,a9,a2

35、,a6,a10,a3,a7,a11。20、求下列置换的运算:解:(1)=(2)=21、试求出8阶循环群的所有生成元和所有子群。解:设G是8阶循环群,a是它的生成元。则G=e,a,a2,.,a7。由于ak是G的生成元的充分必要条件是k与8互素,故a,a3,a5,a7是G的所有生成元。因为循环群的子群也是循环群,且子群的阶数是G 的阶数的因子,故G的子群只能是1 阶的、2阶的、4 阶的或8阶的。因为|e|=1,|a|=|a3|=|a5|=8,|a2|=|a6|=8, |a4|=2,且G 的子群的生成元是该子群中a的最小正幂,故G的所有子群除两个平凡子群外,还有e,a4,e,a2,a4,a6。22、

36、I上的二元运算*定义为:a,bI,a*b=a+b-2。试问是循环群吗?解:是循环群。因为是无限阶的循环群,则它只有两个生成元。1和3是它的两个生成元。因为an=na-2(n-1),故1n=n-2(n-1)=2-n。从而对任一个kI,k=2-(2-k)=12-k,故1是的生成元。又因为1和3 关于*互为逆元,故3 也是的生成元。23、设是群,aG。令H=xG|ax=xa。试证:H 是G 的子群。证明:c,dH,则对c,dHK,ca=ac,da=ad。故(cd) a=c(da)=c(ad)=(ca) d=(ac) d=a(cd)。从而cdH。由于ca=ac,且满足消去律,所以a c-1=c-1a。

37、故c-1H。从而H 是G的子群。24、证明:偶数阶群中阶为2 的元素的个数一定是奇数。证明:设是偶数阶群,则由于群的元素中阶为1 的只有一个单位元,阶大于2 的元素是偶数个,剩下的元素中都是阶为2 的元素。故偶数阶群中阶为2 的元素一定是奇数个。25、证明:有限群中阶大于2的元素的个数一定是偶数。证明:设是有限群,则aG,有|a|=|a-1|。且当a 阶大于2时,a-1。故阶数大于2 的元素成对出现,从而其个数必为偶数。26、试求中每个元素的阶。解: 0是中关于+6的单位元。则|0|=1;|1|=|5|=6,|2|=|4|=3,|3|=2。27、设是群,a,bG,ae,且a4b=ba5。试证a

38、bba。证明:用反证法证明。 假设ab=ba。则a4b= a3(ab)= a3(ba)=(a5b)a=(a2(ab)a=(a2(ba)a=(a2b)a)a=(a(ab)(aa)=(a(ba)a2=(ab)a)a2 =(ba)a)a2=(ba2)a2=b(a2a2)=ba4。因为a4b= ba5,所以ba5= ba4。由消去律得,a=e。这与已知矛盾。28、I上的二元运算*定义为:a,bI,a*b=a+b-2。试证:为群。证明:(1)a,b,cI,(a*b)*c=(a*b)+c-2=(a+b-2)+c-2=a+b+c-4, a*(b*c)=a+(b*c)-2=a+(b+c-2)-2=a+b+c-

39、4。故(a*b)*c= a*(b*c),从而*满足结合律。(2)记e=2。对aI,a*2=a+2-2=a=2+a-2=2*a.。故e=2是I关于运算*的单位元。(3)对aI,因为a*(4-a)=a+4-a-2=2=e=4-a+a-2=(4-a)*a。故4-a是a关于运算*的逆元。 综上所述,为群。29、设为半群,aS。令Sa=ai | iI+ 。试证是的子半群。证明:b,cSa,则存在k,lI+,使得b=ak,c=al。从而bc=akal=ak+l。因为k+lI+,所以bcSa,即Sa关于运算封闭。故是的子半群。30、单位元有惟一逆元。证明:设是一个群,e是关于运算的单位元。若e1,e2都是e

40、的逆元,即e1*e=e且e2*e=e。因为e是关于运算的单位元,所以e1=e1*e=e=e2*e=e2。即单位元有惟一逆元。31、设e和0是关于A上二元运算*的单位元和零元,如果|A|1,则e0。证明:用反证法证明。假设e=0。对A的任一元素a,因为e和0是A上关于二元运算*的单位元和零元,则a=a*e=a*0=0。即A的所有元素都等于0,这与已知条件|A|1矛盾。从而假设错误。即e0。32、证明在元素不少于两个的群中不存在零元。证明:(用反证法证明)设在素不少于两个的群中存在零元。对aG, 由零元的定义有 a*=。 是群,关于*消去律成立。 a=e。即G中只有一个元素,这与|G|2矛盾。故在

41、元素不少于两个的群中不存在零元。33、证明在一个群中单位元是惟一的。证明:设e1,e2都是群G,*的单位元。 则e1=e1*e2=e2。 所以单位元是惟一的。34、设a是一个群G,*的生成元,则a-1也是它的生成元。证明:xG,因为a是G,*的生成元,所以存在整数k,使得x=a。故x=(a)=(a)=(a)。从而a-1也是G,*的生成元。35、在一个偶数阶群中一定存在一个2阶元素。证明:群中的每一个元素的阶均不为0 且单位元是其中惟一的阶为1的元素。因为任一阶大于2 的元素和它的逆元的阶相等。且当一个元素的阶大于2 时,其逆元和它本身不相等。故阶大于2 的元素是成对的。从而阶为1的元素与阶大于

42、2 的元素个数之和是奇数。因为该群的阶是偶数,从而它一定有阶为2 的元素。36、代数系统是一个群,则G除单位元以外无其它等幂元。证明:设e是该群的单位元。若a是的等幂元,即a*a=a。 因为a*e=a,所以a*a=a*e。由于运算*满足消去律,所以a=e。 即G除单位元以外无其它等幂元。37、设是一个群,则对于a,bG,必有唯一的xG,使得ax=b。证明:因为a-1*bG,且a*(a-1*b)=(a*a-1)*b=e*b=b,所以对于a,bG,必有xG,使得ax=b。若x1,x2都满足要求。即ax1=b且ax2=b。故ax1=ax2。由于*满足消去律,故x1=x2。从而对于a,bG,必有唯一的

43、xG,使得ax=b。38、设半群中消去律成立,则是可交换半群当且仅当a,bS,(ab)2=a2b2。证明:a,bS,(ab)2=(ab)(ab)=(ab)a)b=(a(ab)b=(aa)b)b=(aa)(bb)=a2b2;a,bS,因为(ab)2=a2b2,所以(ab)(ab)=(aa)(bb)。故a(ba)b)=a(a(bb)。由于满足消去律,所以(ba)b=a(bb),即(ba)b=(ab)b。从而ab=ba。故满足交换律。39、设群除单位元外每个元素的阶均为2,则是交换群。证明:对任一aG,由已知可得a*a=e,即a-1=a。对任一a,bG,因为a*b=(a*b)-1=b-1*a-1=b*a,所以运算*满足交换律。 从而G,*是交换群。40、设*是集合A上可结合的二元运算,且a,bA,若a*b=b*a,则a=b。试证明:(1)aA,a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论