版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十二章 二次函数,22.1 二次函数的图象和性质,第2课时 二次函数yax2的图象,创设情境 明确目标,1.对于函数的图象和性质的研究我们并不陌生,你认为可以从哪些方面研究函数的图象和性质?,2.如何研究一次函数的图象和性质的?类比一次函数的图象和性质的研究方法,二次函数的图象是什么形状?它又具有哪些性质呢?,图象的形状、经过的象限、增减性,1. 理解抛物线的有关概念,会用描点法画出二次函数yax2的图象,2.掌握二次函数yax2图象的性质,并会应用性质解题.,自主学习 指向目标,学习目标,你会用描点法画二次函数y=x2的图象吗?,观察y=x2的表达式,选择适当x值,并计算相应的y值,完成
2、下表:,9,4,1,1,0,4,9,合作探究 达成目标,探究点一 画二次函数yax2的图象,描点,连线,y=x2,合作探究 达成目标,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线,这条抛物线关于 y轴对称,y轴就 是它的对称轴.,对称轴与抛物 线的交点叫做 抛物线的顶点.,议一议,(2)图象 与x轴有交点吗?如果有,交点坐标是什么?,(4)当x0呢?,(3)当x取什么值时,y的值最小?最小值是什么? 你是如何知道的?,观察图象,回答问题:,(1)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点?,当x0 (在对称轴的 左侧)时,y随着x的增大而 减小.,
3、当x0 (在对称轴的 右侧)时, y随着x的增大而 增大.,抛物线y=x2在x轴的 上方(除顶点外),顶点 是它的最低点,开口 向上,并且向上无限 伸展;当x=0时,函数y 的值最小,最小值是0.,针对练一,1.抛物线y=x2的顶点坐标是_,对称轴是_. 2.抛物线y=1/3x2有最_点,其坐标是_.,(0,0),y轴,低,(0,0),例1.在同一直角坐标系中画出函数y= x2和y=2x2的图象,解: (1) 列表,(2) 描点,(3) 连线,8,2,0.5,0,0.5,2,4.5,8,4.5,8,-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,4.5,2,0.5,0,0.5,2,
4、4.5,8,探究点二 二次函数yax2的性质,函数y= x2, y=2x2的图象与函数y=x2(图中虚线图形)的图象相比,有什么共同点和不同点?,观察,共同点:,不同点:,开口都向上;,顶点是原点而且是抛物线 的最低点,对称轴是 y 轴,开口大小不同;,|a|越大,,在对称轴的左侧, y随着x的增大而减小。,在对称轴的右侧,y随着x的增大而增大。,抛物线的开口越小。,合作探究 达成目标,解: (1) 列表,(2) 描点,(3) 连线,-,-2.25,-,-0.25,-0.25,-,-2.25,-,-2,-2,-,-,-,-,-.,-.,-.,-.,-.,-.,-.,-.,-4. 5,-4. 5
5、,-1,-2,-3,0,1,2,3,-1,-2,-3,-4,-5,-1,-2,-3,0,1,2,3,-1,-2,-3,-4,-5,观察,函数y= x2,y=2x2的图象与函数y=x2 (图中蓝线图形)的图象相比,有什么共同点和不同点?,共同点:,开口都向下;,不同点:,顶点是原点而且是抛物线 的最高点,对称轴是 y 轴,开口大小不同;,|a| 越大,,在对称轴的左侧, y随着x的增大而增大。,在对称轴的右侧, y随着x的增大而减小。,抛物线的开口越小,针对练二,D,cd b a,针对练二, ,向上,向下,(0 ,0),(0 ,0),y轴,y轴,当x0时, y随着x的增大而减小。,当x0时, y随着x的增大而增大。,x=0时,y最小=0,x=0时,y最大=0,抛物线y=ax2 (a0)的形状是由|a|来确定的,一般说来, |a|越大,当x0时, y随着x的增大而增大。,当x0时, y随着x的增大而减小。,抛物线的开口就越小.,|a|越小,抛物线的开口就越大.,总结梳理 内化目标,达
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大豆产业区块链技术应用合同
- 二零二四年度咨询服务合同的主题与标的
- 2024版基站建设打胶合同
- 2024年度影视制作与发行合同具体条款
- 2024年度幼儿园食堂运营管理合同:服务周期与费用
- 2024年度加工承揽合同模板(含技术参数要求)
- 中介公司租房合同范本
- 2024年度果品市场交易合同书:苹果购销合同
- 游泳池应急预案
- 2024年度超声波设备生产线改造合同
- JTG∕T F30-2014 公路水泥混凝土路面施工技术细则
- 帆船知识课件
- 企业宣传片项目进度计划
- 2023-2024学年统部编版九年级道德与法治下册全册知识点总结讲义
- 奇瑞QQ冰淇淋说明书
- 糖尿病性舞蹈病
- EPC项目承包人施工方投资估算与设计方案匹配分析
- 听数学故事探秘负数起源
- 《第八课 我的身体》参考课件
- 慢性伤口评估及护理
- 妇科疾病患者的护理健康评估
评论
0/150
提交评论