版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初二数学经典题型1已知:如图,P是正方形ABCD内点,PADPDA150求证:PBC是正三角形 证明如下。APCDB首先,PA=PD,PAD=PDA=(180-150)2=15,PAB=90-15=75。在正方形ABCD之外以AD为底边作正三角形ADQ, 连接PQ, 则PDQ=60+15=75,同样PAQ=75,又AQ=DQ,,PA=PD,所以PAQPDQ, 那么PQA=PQD=602=30,在PQA中,APQ=180-30-75=75=PAQ=PAB,于是PQ=AQ=AB,显然PAQPAB,得PBA=PQA=30,PB=PQ=AB=BC,PBC=90-30=60,所以ABC是正三角形。ANF
2、ECDMB2.已知:如图,在四边形ABCD中,ADBC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F求证:DENF证明:连接AC,并取AC的中点G,连接GF,GM.又点N为CD的中点,则GN=AD/2;GNAD,GNM=DEM;(1)同理:GM=BC/2;GMBC,GMN=CFN;(2)又AD=BC,则:GN=GM,GNM=GMN.故:DEM=CFN.3、如图,分别以ABC的AC和BC为一边,在ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点求证:点P到边AB的距离等于AB的一半证明:分别过E、C、F作直线AB的垂线,垂足分别为M、O、N,在梯形MEFN中,WE
3、平行NF因为P为EF中点,PQ平行于两底PCGFBQADE所以PQ为梯形MEFN中位线,所以PQ(MENF)/2又因为,角0CB角OBC90角NBF角CBO所以角OCB=角NBF而角C0B角Rt角BNFCB=BF所以OCB全等于NBFMEA全等于OAC(同理)所以EMAO,0BNF所以PQ=AB/2.4、设P是平行四边形ABCD内部的一点,且PBAPDA求证:PABPCB过点P作DA的平行线,过点A作DP的平行线,两者相交于点E;连接BE 因为DP/AE,AD/PE PADCB所以,四边形AEPD为平行四边形 所以,PDA=AEP 已知,PDA=PBA 所以,PBA=AEP 所以,A、E、B、
4、P四点共圆 所以,PAB=PEB 因为四边形AEPD为平行四边形,所以:PE/AD,且PE=AD 而,四边形ABCD为平行四边形,所以:AD/BC,且AD=BC 所以,PE/BC,且PE=BC 即,四边形EBCP也是平行四边形 所以,PEB=PCB 所以,PAB=PCB5.P为正方形ABCD内的一点,并且PAa,PB2a,PC=3a正方形的边长解:将BAP绕B点旋转90使BA与BC重合,P点旋转后到Q点,连接PQ因为BAPBCQ所以APCQ,BPBQ,ABPCBQ,BPABQCACBPD因为四边形DCBA是正方形所以CBA90,所以ABPCBP90,所以CBQCBP90即PBQ90,所以BPQ
5、是等腰直角三角形所以PQ2*BP,BQP45因为PA=a,PB=2a,PC=3a所以PQ22a,CQa,所以CP29a2,PQ2CQ28a2a29a2所以CP2PQ2CQ2,所以CPQ是直角三角形且CQA90所以BQC9045135,所以BPABQC135作BMPQ则BPM是等腰直角三角形所以PMBMPB/22a/22a所以根据勾股定理得:AB2AM2BM2(2aa)2(2a)2522a2所以AB(522)a6.一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管倍的大水管注水。向容器中注满水的全过程共用时间t分。求两根水管各自注水的速
6、度。解:设小水管进水速度为x,则大水管进水速度为4x。由题意得:解之得:经检验得:是原方程解。小口径水管速度为,大口径水管速度为。7如图11,已知正比例函数和反比例函数的图像都经过点M(2,),且P(,2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B (1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得OBQ与OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的
7、最小值图12图11解:(1)设正比例函数解析式为,将点M(,)坐标代入得,所以正比例函数解析式为 同样可得,反比例函数解析式为 (2)当点Q在直线DO上运动时,设点Q的坐标为, 于是,而,所以有,解得 所以点Q的坐标为和 (3)因为四边形OPCQ是平行四边形,所以OPCQ,OQPC,而点P(,)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值因为点Q在第一象限中双曲线上,所以可设点Q的坐标为,由勾股定理可得,所以当即时,有最小值4,又因为OQ为正值,所以OQ与同时取得最小值,所以OQ有最小值2 由勾股定理得OP,所以平行四边形OPCQ周长的最小值是8.如
8、图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证: PE=PD ; PEPD;(2)设AP=x, PBE的面积为y. 求出y关于x的函数关系式,并写出x的取值范围; 当x取何值时,y取得最大值,并求出这个最大值. 解:(1)证法一: 四边形ABCD是正方形,AC为对角线, BC=DC, BCP=DCP=45. PC=PC,ABCDPE12H PBCPDC (SAS). PB= PD, PBC=PDC. 又 PB= PE , PE=PD. (i)当点E在线段BC上(E与B、C不重合)时, PB=PE, PBE=PEB, PEB=P
9、DC, PEB+PEC=PDC+PEC=180, DPE=360-(BCD+PDC+PEC)=90, PEPD. )(ii)当点E与点C重合时,点P恰好在AC中点处,此时,PEPD.(iii)当点E在BC的延长线上时,如图. PEC=PDC,1=2, DPE=DCE=90, PEPD.综合(i)(ii)(iii), PEPD. ABCPDEF(2) 过点P作PFBC,垂足为F,则BF=FE. AP=x,AC=, PC=- x,PF=FC=. BF=FE=1-FC=1-()=. SPBE=BFPF=(). 即 (0x). . 0, 当时,y最大值. (1)证法二: 过点P作GFAB,分别交AD、
10、BC于G、F. 如图所示. 四边形ABCD是正方形,ABCPDEFG123 四边形ABFG和四边形GFCD都是矩形,AGP和PFC都是等腰直角三角形. GD=FC=FP,GP=AG=BF,PGD=PFE=90. 又 PB=PE, BF=FE, GP=FE, EFPPGD (SAS). PE=PD. 1=2. 1+3=2+3=90. DPE=90. PEPD. (2) AP=x, BF=PG=,PF=1-. SPBE=BFPF=(). 即 (0x). . 0, 当时,y最大值. 9、如图,直线y=k1x+b与反比例函数 y=k2x的图象交于A(1,6),B(a,3)两点(1)求k1、k2的值(2)直接写出 k1x+b-k2x0时x的取值范围;(3)如图,等腰梯形OBCD中,BCOD,OB=CD,OD边在x轴上,过点C作CEOD于点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 硫酸锌施工单位廉政合同
- 古镇陶艺店租赁协议
- 交通运输行业人员租赁合同
- 停车场水电布线协议
- 市政资源拓展房屋拆迁施工合同
- 通信项目经理聘用合同年薪制
- 培训机构租赁合同模板
- 商务楼大堂清洁维护协议
- 食品添加剂厂自来水安装合同
- 网络技术研发合作协议
- 2024秋国家开放大学《马克思主义基本原理》专题测试1-8参考答案
- 新概念英语第二册33课市公开课获奖课件省名师示范课获奖课件
- 企业国际化经营战略规划与实施方案
- 3.3-栈的应用-迷宫求解解析
- 慢性肾衰竭血液透析患者的流行病学调查分析
- 大学生体质健康标准与锻炼方法(吉林联盟)智慧树知到期末考试答案章节答案2024年东北师范大学
- 任职资格体系3-某公司营销销售族销售、供应、客服和职能任职资格
- 2024年省内江市东兴区公办学校考调教师67人(高频重点提升专题训练)共500题附带答案详解
- 2012电池制造行业分析报告
- 2024年军队文职统一考试《专业科目》管理学试卷(网友回忆版)
- JT-T-973-2015路用非氯有机融雪剂
评论
0/150
提交评论