




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第八章 量子力学基础,The Basis of Quantum Mechanics,引 言,Introduction,从经典力学到量子力学,经典力学:以牛顿三大定律为中心内容 适用于宏观物体的机械运动 质量比一般分子或原子大得多的物体在速度比 光速小得多的情况下服从经典力学的定律. 量子力学:描述微观粒子运动规律的科学 适用于微观粒子的运动 如果某一物理量的变化是不连续的,而是以某一最小单位作跳跃式增减,我们就说这一物理量是“量子化”的. 波粒二象性是说微观粒子即有微粒的性质,又有波动的性质,是微粒和波动性的矛盾统一体。,量子力学的实验基础,当将经典力学运用来解释与原子、分子有关的实验事实时,
2、有三类实验无法得到圆满的结论,这些实验是: 黑体辐射 光电效应 原子光谱,1 黑体辐射(Black-body Rediation),作简谐运动的微粒就叫作谐振子 (Harmonic Oscillator),Rayleigh -Jeans 方程,(910),(911),频率与波长的关系:,很大时和实验测得的曲线相符,但在很小时,却和实验曲线不符 根据(911)式,当 0时, , 而实验结果却是 0 紫外灾难 维恩(Wien W) 公式,式中馕 该公式仅在 T 1011秒1K1时适用,光照在电极上时,使金属中的电子获得能量脱出金属,因而发生电流。这样发射的电子称为光电子,在A、C二极施加一负向电位
3、差, 更可促进光电子奔向C极,使电流 强度增大。,若施以正向电位差时,光电子奔向C极的趋势就被阻挠了,G中电流强度就会减弱。,2.光电效应(the Photoelectric effect),用固定强度和频率的光照射所得光电流和两极间电压的实验曲线,爱因斯坦在1905年提出了光子学说,他认为光子的能量E与频率成正比,即Eh 质能联系定律E=mc2,则mc2 h 动量p应为:p=mc= h/c=h/,光的强度,是光子数量多少的反映,只能影响击出电子的数目,而不能改变电子的动能。,利用光子学说,可以解释光电效应,式中: 恚1耄 恚c为波数,是在波的传播方向上单位长度内波的数目; RH里德堡常数。
4、n1、n2皆为正整数,且n2n1。 n1=1,黎曼(赖曼Lyman)线系; n1=2,巴尔末(Balmer)线系; n1=3,巴新(Paschen)线系。,3.氢原子光谱(Atomic Spectra),4.电子衍射(The Diffraction of Electron),德布罗意在1923年提出了一个非常大胆的假设: 波动性与粒子性的二重性不只限于光的现象,微粒物质都有二重性。,公式的左方是与粒子性相联系的动量p,右方包括与波 性相联系的波长,h为普朗克常数。,对于微粒,动量p=m,则,微观粒子运动的基本特征,1.波粒二象性 微观粒子既具有粒子性,又具有波动性。 作为粒子性,粒子有动量p及
5、能量E,作为波动性,有波长和频率,波的强度用波函数度量。 具有一定波长和频率的波称为简谐波。沿x轴传播的平面简谐波函数为:,式中:t为时间; 0为振幅;,对于光子,,波的叠加原理:两个或多个波同时通过时,在空间某区域状态可用几个波函数之和来描述,当波程差为波长的整数倍时,相互得到加强;而波程差为波长的半整数倍时,相互抵消。,驻波:由振幅相同但方向相反的两个平面波叠加而产生,与行波(向前传播着的波)相对。,振幅最大的地方叫做波腹 那些不振动的点叫做节点,驻波的形成,2.二象性的统计性,虽然物质波的实质迄今为止沿有争论,但科学界大多认为它是一种几率波。,波恩从统计力学的观点出发,对德布罗意波获得了
6、如下解释:实物微粒的运动并不服从宏观世界的牛顿定律,而是服从量子力学的统计规律。 按照测不准原理,对于运 动着的这些微粒,不可能确 定它们某时刻在空间准确位 置。但也不是杂乱无章毫无 规律的运动,3.不确定原理(测不准原理),在经典力学中,我们用粒子的坐标和速度来描述它的状态.也可用坐标与动量来描述;微观粒子则根本不具备同时准确决定位置和动量的性质,不确定原理的另一表达式:,不确定原理说明:微观的动量与坐标不能同时准确确定,能量与时间也不能同时准确确定。 值得注意的是测不准关系式也同样适用于宏观粒子,只不过这时的不准确量和动量都不起任何实际作用。如P21例题所示。 研究微观粒子的运动需要一个崭
7、新的理论,即量子力学。,8.1 量子力学的基本假设,The Postulates of Quantum Mechanics,1.算符 Operator,(1)运算规则,(2)对易子,所谓算符,就是数学上的一些运算符号,(3)线性算符,(4)算符的本征方程、本征函数和本征值,(5)厄米算符(自厄算符) 厄米算符要具备两个特征:线性且自厄,厄米算符的重要性质: a.厄米算符的本征值是实数 这一点很重要,因为薛定谔方程中的本征值就是能量E,角动量 方程中的本征值就是角动量的平方M2,显然这类本征值均为实验 可测的物理量,当然只能是实数而不应是虚数。而厄米算符正符合 这一要求。 b.厄米算符的不同本征
8、函数具有正交性。,2.量子力学的四个基本假定,(1)微观粒子系统的状态可用波函数来描述。 波函数具有以下特点: a.波函数是坐标和时间的函数(q,t)。 b. 具有单值、有限和连续可微的性质。 即是一个品优函数。 c. 与共轭复数*的乘积 *(或模的平方)代表粒子出现的概率密度。,(2)微观粒子系统的每个可观察的力学量F,都对应着一 个厄米算符。,补充假定:哈密顿算符的本征函数是波函数 与时间无关的能量算符即哈密顿算符,相应的本征方程,(3)当在一定状态下测量某力学量F时,可能有不同数值,其统计平均值,E就是某时刻t微观粒子系统能量的统计平均值,(4)微观粒子系统的运动方程由薛定谔方程描述,8
9、.2 势箱中粒子的薛定谔方程求解,The Schrodinger E Equation of Particals,与时间无关的薛定谔方程(E不随t变化,如果系统中只含一个微粒,简并度:具有相同本征值的不同的本征函数的个数. 例如:若有三个波函数1, 2, 3具有相同的本征值Ei,则Ei,的简 并度为,态的叠加,1.一维势箱中的粒子 一维平动粒子的薛定谔方程,在条件(1)情况下,可得AB0,则,按归一化条件(3),2.三维势箱中平动粒子 三维粒子的薛定谔方程,假定粒子在边长为a,b,c的三维势箱中的势能为零,在边界处及边界外所有地方势能无穷大。则粒子的薛定谔方程为:,假设:,三维势箱中粒子的平动
10、能级和平动波函数,由上式可看出: 当a,b,c增大时,基态能量E0下降; 当a,b,c均趋于无穷时,粒子的能级间隔趋于零,此时粒子的能量变为可连续变化的量。 所以粒子能量的量子化是因为粒子受到束缚而引起的。在原子各分子中运动的电子受到原子核和其它电子所产生的力场的束缚,所以这粒子或电子的能量都是量子化的。 另外,粒子的能量随势箱的变大而降低的结论也有重要意义。在一定条件下,微粒较狭窄的活动范围过渡到较宽广的活动范围,从而产生能量降低的效应称这为离域效应。,简并能级和简并态 当比零点能稍高一点的一个能量应怎样?,当体系的两个以上波函数具有相同能级时,这样的能级就 称为简并能级,它所对应的波函数(
11、状态)称为简并态;而相 应于同一能量值的波函数的数目就称为简并度。 在上例中简并度为3,8.3 一维谐振子,The One-Dimensional Harmonic Oscillator,1.一维谐振子经典力学处理,2.一维谐振子的量子力学处理,对应于一维谐振子的哈密顿函数,可写出哈密顿算符,振动能级Ev,酰振动量子数 0,Ev=h0/2,称为零点能 振动能级是非简并的,即gv=1,振动波函数 解一维谐振子的薛定谔方程可得振动波函数,不同踔凳钡H如表94所示(P44) 010时不同的振动量子态的波函数及位能曲线如图928 所示;相应的概率密度如图929所示。,r=0,V(0)=0为平衡点,即无
12、拉伸亦无压缩; 当r0(拉伸)时,V按抛物线升高。 n,节点个数与振动量子数相等。 0时,质点间距为平衡点的情况出现的概率最高; 1时,质点间距为平衡点的情况出现的概率为零。 波函数可延伸到位能曲线之外,也称隧道效应。,8.4 二体刚性转子,Rotational Partical of Two Bodies,1. 刚性转子经典力学处理,当线型刚性转子绕质量中心旋转时,2.刚性转子的量子力学处理,坐标变换 如图所示:,线型刚性转子的薛定谔方程,转动波函数(球谐波函数),转动能级 由薛定谔方程可解得:,由图及表9-3均可知:同一能级,可对应若干不 同的波函数或状态。,3.取向量子数m 的意义 角动
13、量不仅本身,它在空间的取向也是量子化的。它在z轴的 分量Mz必须符合:,转动的角动量,4.线型刚性转子薛定谔方程的求解,将上述方程分离变量分别解之,对苑匠痰慕猓,随着常数m的不同,此方程有一组解,以m 表示之。 此方程的解为:,归一化条件为:,址匠探馕,对确匠痰慕,8.5 类氢离子及多电子原子的结构,Similar Hydrogen Atoms and the Structure of Polyelectron Atoms,一、类氢离子的定态薛定谔方程及其解,氢原子或类氢离子是含有一个原子核和一个电子的体系,随着要 研究问题的不同,氢原子或类氢离子的薛定谔方程有不同的写法。,(1)氢原子质心的
14、平移运动 氢原子或类氢离子看作质量集中在质心的一个质点。 令:m表示氢原子或类氢离子的质量;(X,Y,Z)表示质心的坐标; t 表示质心平移运动的波函数;Et 表示质心运动的总能量; 在空间自由运动的氢原子或类氢离子整体势能V0。,薛定谔方程为:,1、类氢离子的定态薛定谔方程,把核选作坐标的原点。 令:(x,y,z)为电子在此坐标系的坐标: 为它的波函数;为电子的折合质量, me。,(2)氢原子中电子对核的相对运动,薛定谔方程为:,一般而言,氢原子或类氢离子是含有一个原子和一个电子的体 系,令:(x1,y1,z1)为原子核的坐标, (x2,y2,z2)为电子的坐标; T为它的波函数;mn,me
15、 分别为原子核与电子的质量; ETEt+E为氢原子的总能量。,(3)氢原子作为两个质点的体系,薛定谔方程为:,在本小节中我们要着重讨论电子对核的相对运动,即第二个方程,方程中波函数可称为原子轨道函数,为求解方便,将式中 直角坐标转换为球坐标,2.氢原子和类氢离子的薛定谔方程的变量分离,3. ,旨R的求解,电子的轨道角动量及空间取向,取,二者的乘积为球谐函数,将上述方程中J 换成 l ,称为角量子数,m 称为磁量子数。,R为径向波函数,4. 三个量子数,氢原子中电子运动状态由n, l, m 三个量子数决定,而三个量子数之间有如下关系,n=1,2,3, nl+1, l=0,1,2,3, lm m=
16、0, 1, 2, 3, 通常我们用符号s,p,d,g,h, 来依次代表l=0,1,2,3,4, 可能的运动状态只有如下组合: n=1 l=0 m=0 1s轨道1个 n=2 l=0 m=0 2s轨道1个 l=1 m=0 m=1 n=3 3s 轨道1个 3p 轨道3个 3d 轨道5个 ,二、原子轨道及其图形表示 the Atomic Orbital and their Diagrams,任何形式的单电子波函数称为轨道,波函数 模的平方对应于粒子出现的概率, d表示在空间小区域d粒子出现的概率。 但由于 即与r 有关又与,有关,整体表达相当困难,只能从不同角度讨论之。,1.径向分布函数 氢原子的各种
17、波函数的径向分布有几种表示方法:,(1)Rr 图: 1s的R随r 按指数下降;2s在r =2a0 处R0 有 一节面,节面内外R的符号相反;3s有两个节面。,(2)R2r 图: 与Rr 图相似,但R2 均为正值。,(3)Dr 图:,Dr2R2 称径向分布函数,表示概率密度沿径向r 的分布; 曲线最高点的位置是D最大的球壳,曲线高峰的个数为n-l; 在两个高峰之间函数有一个零点,以零点的r为半径可作一 球面,在此球面上电子云密度为零,称为节面,节面个数为n-l-1,例如: 3s有3-0-1=2个节面, 3p有3-1-1=1个节面。,2.角度分布图,()()是角度部分,以Y 表示,即 Y (,)
18、= ()(),描写角度分布可用立体极坐标图。先定一原点与z 轴,从原点引一直线,方向为(,),长度为Y2。所有直线的在空间形成一曲面,从曲面的形状可以看出Y2随角度变化的情况。,3.空间分布图,(1)波函数的等值线图,电子云的空间分布可用等密度面来表示.作图方法以2pz为例说明之 a. 查表得2pz=f(r,),相应的概率密度为= 2 b.做不同的 r 图,并找出相等的点 c.在xz平面图中作出 r =2a0,4a0,6a0,8a0等圆, 又作出 =30,45 ,60 ,120 ,135 ,150 等直线 d.在xz平面图中描出等点,连线并 绕z轴旋转一周,即得等密度面.,等值线,2pz 图
19、3pz图 3dxz图 3dz2 图,(2)网格线图,波函数的立体表示图 用计算机图像处理技术,将等值线图变为立体网格线图.,轨 道 立 体 图,轨 道 立 体 图,轨 道 立 体 图,电子云的界面 是一等密度面,发现电子在此界面以外的概率很小,通常认为在界面以外发现电子的概率可以忽略不计。如果已知,又假定发现电 子在界面内的概率是90,则界面半径R可由下式计算:,(3)电子云界面图,三、电子自旋 the Electron Spin,1.电子自旋的实验根据,光谱学家很早就发现原子光谱具有很复杂的结构(精细结构),例如钠原子的主线系为双重线,两条线的距离为6 根据原子光谱理论,应为2p分为邻近的两
20、个能级所引起。但电子在有心场中的运动的研究表明2p(n=2,l=1)是由三个合在一起的能级(m=0, 1)所组成,并不是由两个相靠近的能级所组成。,如果假设电子除绕核运动外,还有正反两个方向的自旋,这一问题就迎刃而解了,斯特恩盖拉赫(Stern-Gerlach)实验是直接证明电子自旋存在的一个重要根据。,2. 关于自旋的若干概念,在微观粒子中除了电子的自旋,还存在原子的自旋,二者均有自旋角动量,其值为,自旋角动量在外磁场方向的分量:,自旋波函数:表达电子自旋状态,完全波函数与总角动量:,关于电子运动(轨道运动及自旋运动)的角动量: (1)角动量的量子数总是正值。例如电子的自旋,无论是顺 时针还
21、是逆时针s=1/2。而在磁场的作用下就有区别,其角动量可 以是顺着外磁场方向,也可以逆着外磁场方向,因此在z轴上的分 量m可正也可负。 (2)角动量的大小,量子化的情况及它在磁场中定向的情形,都是标志微粒运动的特征。例如电子轨道运动,角量子数l=0的s 电子云是球形的,l=1的电子云是哑铃形的,l=2的电子云是双哑 铃形的。,四、多电子原子的结构,1.核外电子排布与电子组态,N个电子按能级由低向高填入原子轨道,可得到核外电子排布,所得排布方式称电子组态,核外电子排布所遵循的规律 (1)泡利不相容原理 (2)能量最低原理:对于基态,电子排布应尽可能使总能量最低. (3)洪特规则:当两个电子在一组
22、能量相同的原子轨道上排布时,它们将尽可能分占不同的轨道,并保持自旋平行.,2.多电子原子的量子数,(1)总轨道角量子数L(轨道运动角动量的耦合),当所有li相等时L的最小值为0;当各li不等时,L的最小值为以上组合的最小正值.,例:三个p电子(l1=l2=l3=1),L=3,2,1,0; 一个f电子,两个p电子(l1=3,l2=l3=1),L=5,4,3,2,1,多电子原子的总轨道角动量值,总轨道角动量在外磁场方向的分量:,(2)总自旋量子数S(自旋角动量的耦合),多电子原子的总电子自旋角动量值,总电子自旋角动量在外磁场方向的分量:,(3)总角量子数或总内量子数J(LS耦合),例: L=2,S
23、=3/2,J=7/2,5/2,3/2,1/2; L=1,S=3/2,J=5/2,3/2,1/2,LS 耦合适用于轻原子,另外还有jj 耦合适用于重原子。,多电子原子的总角动量值,总角动量在外磁场方向的分量:,3.光谱项,在多电子原子中,光谱项的符号按L值确定,以S,P,D,F,G,H, 代替L0,1,2,3,4,5, 的状态。 光谱项:2S1L 光谱支项: 2S1LJ 当LS时,J有2S1个取值;当LS时,J有2L1个取值。 例:光谱项 2D 表示L=2, S=1/2 (2S+1=21/2+1=2) 则J=L+S, L-S=3/2,1/2 相应的两个光谱支项2D3/2 , 2D1/2,在考虑多电子原子的光谱项时,可以只考虑外层电子或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北师大版七年级下册数学线上教学计划
- 医疗行业职业暴露应急处理流程
- 2025年人教版八年级下册英语教学策略计划
- 基于深度学习的用户评论多粒度情感分析研究与系统实现
- 新警入警培训心得体会
- 环保企业绿色并购对企业绿色创新的影响研究-以高能环境为例
- 水产品加工器具施用苯扎氯铵消毒的效果、风险及风险控制研究
- 资金审批流程
- 癌症病退申请书审核流程
- 心理成长让我如此美丽
- 2024年山西文旅集团招聘笔试参考题库含答案解析
- 全国流感监测技术指南
- 溶血尿毒综合征-2
- 驾驶员月度安全会议签到表模板
- 第八章仿生原理与创新设计
- Unit5 A party (1) 课件 牛津译林版六年级下册英语
- 王阳明与心学
- 城镇土地使用税减免税申请审批表
- 11楼11月份工程施工月进度计划表
- 高处作业安全监理实施细则
- 运用PDCA血透室导管感染率
评论
0/150
提交评论