版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、8、3三元一次方程组解法举例,学习目标,1、了解三元一次方程组的概念 2、掌握三元一次方程组的解法及步骤,例1 纸币问题,小明手头有12张面额分别是1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍求1元、2元、5元的纸币各多少张?,此题是否可以利用二元一次方程组解呢?,分析:本题数量关系_ _ _,1元张数+2元张数+5元张数=12张,1元钱数+2元钱数+5元钱数=22元,1元张数=4倍2元张数,三元一次方程组:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组,定义:,方程中含有未知数的项的次数都是一次,方
2、程组中一共有三个未知数,(1)回顾解二元一次方程组的思路。,想一想,(2)如何解三元一次方程组?,消元,消元,(一)代入消元法,观察方程组:,仿照前面学过的代入法,可以把分 别代入,得到两个只含y,z的方程, ,(二)加减消元法,将下列三元方程组转化成二元一次方程组,分析:方程中只含x,z,因此,可以由消去y,得到一个只含x,z的方程,与方程组成一个二元一次方程组,例1 解三元一次方程组,3x4z=7 2x3yz=9 5x9y7z=8 ,解:3 ,得 11x10z=35 ,与组成方程组,3x4z=7 11x10z=35,解这个方程组,得,X=5 Z=-2,把x5,z-2代入,得y=,因此,三元一次方程组的解为,X=5 Y= Z=-2,你还有其它解法吗?试一试,并与这种解法进行比较.,abc= 0 4a2bc=3 25a5bc=60 ,, 得 ab=1 ,,得 4ab=10 ,与组成二元一次方程组,ab=1 4ab=10,a=3 b=-2,解这个方程组,得,把 代入,得,a=3 b=-2,C=-5,a=3 b=-2 c=-5,因此,答:a=3, b=-2, c=-5.,解方程组,解:,总结: 解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”转化为“二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于2024年度云计算技术的数据存储与处理服务合同
- 推广劳务协议书
- 2024版工程设计居间培训合同2篇
- 离婚协议书范本2024年下载
- 链球菌课件教学课件
- 租房合同图片2篇
- 2024年度高级医疗设备工程师聘用合同3篇
- 2024年度技术开发合作与咨询费用支付合同
- 充电桩合作协议
- 年度安保服务外包合同(2024版)-门卫临时用工部分
- 腰椎术后脑脊液漏的护理
- (2024)全国青少年“学宪法、讲宪法”竞赛题库及答案
- 辽宁省2024年中考英语真题【附真题答案】
- 办公家具供货安装、保障实施及售后服务 投标方案(技术方案)
- 八年级上册(2024修订) 第四单元 整本书阅读 《红岩》导读课公开课一等奖创新教学设计
- 泊车辅助系统设计
- 光伏项目施工总进度计划表(含三级)
- 2024年湖南广电国家广电集团招聘笔试冲刺题(带答案解析)
- 期货交易授权书
- XPS挤塑聚苯板外墙外保温工程施工工艺标准
- DB32-T 4757-2024 连栋塑料薄膜温室建造技术规范
评论
0/150
提交评论