版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、鸽巢问题,陶德勋,我知道至少有2张牌是同一花色。,至少,推进新课,如果把4枝笔放在3个笔筒里,可以怎样放?有几种放法?,总有一个笔筒里至少放2根笔。,总有,至少,枚举法,这种方法是从最不利的情况来考虑,先平均分,每个笔筒里都放一枝,就可以使放得较多的这个文具盒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个文具盒里至少放进2枝铅笔。,怎样才能最快地知道这个放得最多的笔筒里至少有枝笔?,平均分,假设法,43=1(枝)1(枝),1+1=2(枝),总有一个笔筒里至少放2根笔。,总有,至少,抽屉原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷提出并运用于解决数论中的问题,所以该原理
2、又称“狄利克雷原理”。抽屉原理有两个经典案例,一个是把10个苹果放进9个抽屉里,总有一个抽屉至少放了2个苹果,所以这个原理又称为“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”。,你知道吗?,为什么老师可以肯定地说:从52张牌中任意抽取5张牌,至少会有2张牌是同一花色的?你能用所学的抽屉原理来解释吗?,54=11, 1+1=2,推进新课,你好,我们有五个人帮我们开五间房。,稍等,先生,我们只剩3间房了。,如果王老师和他的朋友们只能入住这家宾馆, 怎么安排比较合理?总有一个房间至少住( )人。,2,10个人呢?会有什么结果?,103=3(间)1(人
3、) 3+1=4(人),如果把8个人住3个房间里,会有什么结果?,83=2(间)2(人) 2+1=3(人),把3枝 笔 放在 2个 笔筒 里,把4枝 笔 放在 3个 笔筒里,把100枝 笔 放在 99个 笔筒里,把N+1枝 笔 放在 N个 笔筒里,物体数,抽屉,物体数抽屉数商余数,至少数:商1,如果物体数除以抽屉数有余数,用所得的商加1,就会发现“总有一个抽屉里至少有商加1个物体”。,总结,11只鸽子飞回4个鸽舍,至少有( )只鸽子要飞进同一个鸽舍。为什么?,11423,213,3,小试身手,学校高年段共有409名学生,其中六(2)班有68名学生。,(1)高年段里至少有( )人的生日是同一天。,409366=143, 1+1=2。,(2)六(1)班中至少有( )人是同一个月出生的。,6,6812=58, 5+1=6。,用五种颜色给正方体各面涂色(每面只涂一种颜色),请你说明:至少会有两个面颜色相同。,张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于( )环。,415=8 1, 8+1=9,9,这节课我们学到了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浅谈信息技术与小学英语课堂教学的融合
- 2023年山东省泰安市中考物理试题(附答案及解析)
- 宁波2024年04版小学三年级英语第三单元测验试卷
- 2024年数控超精密磨床项目投资申请报告代可行性研究报告
- 第二单元写作《审题立意》教学设计-2023-2024学年统编版语文九年级下册
- 肛肠医疗废水(医疗废水消毒处理技术方案)
- 中学自强之星事迹材料范文(35篇)
- 三年级下学期工作计划(25篇)
- 中秋志愿者活动总结
- 24.5 相似三角形的性质(第2课时)同步练习
- 场地平整土方工程施工设计方案
- 城市初期雨水污染治理
- 厨房工程培训方案
- 在护林员培训班上的讲话护林员会议讲话稿.doc
- 材料科学基础-第7章-三元相图
- EMR系统建设方案(通用)
- (完整word版)高频变压器的设计
- 公路工程2018各项费用的计算程序及计算方式
- 户外急救知识(必备)
- 新浙摄版(2020)五年级下册信息技术全册教案
- 房地产实现场勘查记录表(4张表格)
评论
0/150
提交评论