




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.1.1 集合的含义与表示(1) 学习目标 1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. 学习过程 一、课前准备(预习教材P2 P3,找出疑惑之处)讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的
2、概念集合,即是一些研究对象的总体.集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.二、新课导学 探索新知探究1:考察几组对象: 120以内所有的质数; 到定点的距离等于定长的所有点; 所有的锐角三角形; , , , ; 东升高中高一级全体学生; 方程的所有实数根; 隆成日用品厂2008年8月生产的所有童车; 2008年8月,广东所有出生婴儿.试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(elemen
3、t),把一些元素组成的总体叫做集合(set).试试1:探究1中都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合 .试试2:分析下列对象,能否构成集合,并指出元素: 不等式的解; 3的倍数; 方程的解; a,b,c,x,y,z; 最小的整数
4、; 周长为10 cm的三角形; 中国古代四大发明; 全班每个学生的年龄; 地球上的四大洋; 地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示.如果a是集合A的元素,就说a属于(belong to)集合A,记作:aA;如果a不是集合A的元素,就说a不属于(not belong to)集合A,记作:aA.试试3: 设B表示“5以内的自然数”组成的集合,则5 B,0.5 B, 0 B, 1 B.探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N
5、;正整数集:所有正整数的集合,记作N*或N+; 整数集:全体整数的集合,记作Z;有理数集:全体有理数的集合,记作Q;实数集:全体实数的集合,记作R.试试4:填或:0 N,0 R,3.7 N,3.7 Z, Q, R.探究5:探究1中分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“ ”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与a不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示. 典型例题例1 用列举法表示下
6、列集合: 15以内质数的集合; 方程的所有实数根组成的集合; 一次函数与的图象的交点组成的集合.变式:用列举法表示“一次函数的图象与二次函数的图象的交点”组成的集合.三、总结提升 学习小结概念:集合与元素;属于与不属于;集合中元素三特征;常见数集及表示;列举法. 知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素. 人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日. 学习评价 自我评价 你完成本节
7、导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法正确的是().A某个村子里的高个子组成一个集合B所有小正数组成一个集合C集合和表示同一个集合D这六个数能组成一个集合2. 给出下列关系: ; ;其中正确的个数为( ).A1个B2个 C3个D4个3. 直线与y轴的交点所组成的集合为( ). A. B. C. D. 4. 设A表示“中国所有省会城市”组成的集合,则: 深圳 A; 广州 A. (填或)5. “方程的所有实数根”组成的集合用列举法表示为_. 课后作业 1. 用列举法表示下列集合:(1)由小于10的所有质数组
8、成的集合;(2)10的所有正约数组成的集合;(3)方程的所有实数根组成的集合.2. 设xR,集合.(1)求元素x所应满足的条件;(2)若,求实数x.1.1.1 集合的含义与表示(2) 学习目标 1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. 学习过程 一、课前准备(预习教材P4 P5,找出疑惑之处)复习1:一般地,指定的某些对象的全体称为 .其中的每个对象叫作 .集合中的元素具备 、 、 特征.集合与元素的关系有 、 .复
9、习2:集合的元素是 ,若1A,则x= .复习3:集合1,2、(1,2)、(2,1)、2,1的元素分别是什么?四个集合有何关系?二、新课导学 学习探究思考: 你能用自然语言描述集合吗? 你能用列举法表示不等式的解集吗?探究:比较如下表示法 方程的根; ; .新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为,其中x代表元素,P是确定条件.试试:方程的所有实数根组成的集合,用描述法表示为 . 典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程的所有实数根组成的集合;
10、(2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,、明确时可省略,例如,.例2 试分别用列举法和描述法表示下列集合:(1)抛物线上的所有点组成的集合;(2)方程组解集.变式:以下三个集合有什么区别.(1);(2);(3).反思与小结: 描述法表示集合时,应特别注意集合的代表元素,如与不同. 只要不引起误解,集合的代表元素也可省略,例如,. 集合的 已包含“所有”的意思,例如:整数,即代表整数集Z,所以不必写全体整数.下列写法实数集,R也是错误的. 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法. 动
11、手试试练1. 用适当的方法表示集合:大于0的所有奇数.练2. 已知集合,集合. 试用列举法分别表示集合A、B.三、总结提升 学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合; 知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:,也可以写成:直角三角形;(2)集合与集合是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn图. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1.
12、 设,则下列正确的是( ). A. B. C. D. 2. 下列说法正确的是( ). A.不等式的解集表示为 B.所有偶数的集合表示为 C.全体自然数的集合可表示为自然数 D. 方程实数根的集合表示为3. 一次函数与的图象的交点组成的集合是( ). A. B. C. D. 4. 用列举法表示集合为 .5.集合Ax|x=2n且nN, ,用或填空: 4 A,4 B,5 A,5 B. 课后作业 1. (1)设集合 ,试用列举法表示集合A.(2)设Ax|x2n,nN,且n10,B3的倍数,求属于A且属于B的元素所组成的集合.2. 若集合,集合,且,求实数a、b.1.1.2 集合间的基本关系 学习目标
13、1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义. 学习过程 一、课前准备(预习教材P6 P7,找出疑惑之处)复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合.(1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N; Q; -1.5 R.(2)设集合,则1 A;b B; A.思考:类比实数的大小关系,如57,22,试想集合间是否有类似的“大小”关系呢?二、新课导学 学习探究探究:比较下面几个例子,试发现两个集
14、合之间的关系:与;与;与.新知:子集、相等、真子集、空集的概念. 如果集合A的任意一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset),记作:,读作:A包含于(is contained in)B,或B包含(contains)A.当集合A不包含于集合B时,记作.B A 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图. 用Venn图表示两个集合间的“包含”关系为: . 集合相等:若,则中的元素是一样的,因此. 真子集:若集合,存在元素,则称集合A是集合B的真子集(proper subset),记作:A B(或B A),读作:A真包含于
15、B(或B真包含A). 空集:不含有任何元素的集合称为空集(empty set),记作:. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1) , ;(2) , R;(3)N ,Q N;(4) .反思:思考下列问题.(1)符号“”与“”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论? 若; 若. 典型例题例1 写出集合的所有的子集,并指出其中哪些是它的真子集.变式:写出集合的所有真子集组成的集合.例2 判断下列集合间的关系:(1)与;(2)设集合A
16、=0,1,集合,则A与B的关系如何?变式:若集合,且满足,求实数的取值范围. 动手试试练1. 已知集合,B1,2,用适当符号填空: A B,A C,2 C,2 C.练2. 已知集合,且满足,则实数的取值范围为 .三、总结提升 学习小结1. 子集、真子集、空集、相等的概念及符号;Venn图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法. 知识拓展 如果一个集合含有n个元素,那么它的子集有个,真子集有个. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般
17、D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列结论正确的是( ). A. A B. C. D. 2. 设,且,则实数a的取值范围为( ). A. B. C. D. 3. 若,则( ). A. B. C. D. 4. 满足的集合A有 个.5. 设集合,则它们之间的关系是 ,并用Venn图表示. 课后作业 1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A表示合格产品的集合,B表示质量合格的产品的集合,C表示长度合格的产品的集合则下列包含关系哪些成立?试用Venn图表示这三个集合的关系.2. 已知,且,求实数p、q所满足的条件. 1.1.3 集合的基本运算(1
18、) 学习目标 1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用. 学习过程 一、课前准备(预习教材P8 P9,找出疑惑之处)复习1:用适当符号填空.0 0; 0 ; x|x10,xR;0 x|x5;x|x3 x|x2;x|x6 x|x5.复习2:已知A=1,2,3, S=1,2,3,4,5,则A S, x|xS且xA= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学 学习探究探究:设集合,.(1)试用Venn图表
19、示集合A、B后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集. 一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫作A、B的交集(intersection set),记作AB,读“A交B”,即: A BVenn图如右表示. 类比说出并集的定义.由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集(union set),记作:,读作:A并B,用描述法表示是:.A BAVenn图如右表示.试试:(1)A3,5,6,8,B4,5,7,8,则AB ;(2)设A等腰三角形,B直角三角形,则AB ; (3)Ax|
20、x3,Bx|x0,Bx|x3,则A、B、R有何关系?二、新课导学 学习探究探究:设U=全班同学、A=全班参加足球队的同学、B=全班没有参加足球队的同学,则U、A、B有何关系?新知:全集、补集. 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U. 补集:已知集合U, 集合AU,由U中所有不属于A的元素组成的集合,叫作A相对于U的补集(complementary set),记作:,读作:“A在U中补集”,即.补集的Venn图表示如右: 说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制.试试:(1)U=2,3,
21、4,A=4,3,B=,则= ,= ;(2)设Ux|x8,且xN,Ax|(x-2)(x-4)(x-5)0,则 ;(3)设集合,则= ;(4)设U三角形,A锐角三角形,则 .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集?(2)Q的补集如何表示?意为什么? 典型例题例1 设Ux|x13,且xN,A8的正约数,B12的正约数,求、.例2 设U=R,Ax|1x2,Bx|1x3,求AB、AB、.变式:分别求、. 动手试试练1. 已知全集I=小于10的正整数,其子集A、B满足,. 求集合A、B.练2. 分别用集合A、B、C表示下图的阴影部分. (1) ; (2) ; (
22、3) ; (4) .反思:结合Venn图分析,如何得到性质:(1) , ;(2) .三、总结提升 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn图. 知识拓展试结合Venn图分析,探索如下等式是否成立?(1);(2). 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 设全集U=R,集合,则=( ) A. 1 B. 1,1 C. D. 2. 已知集合U=,那么集合( ). A. B. C. D. 3. 设全集,集合,,则().A BC D4. 已知U
23、=xN|x10,A=小于11的质数,则= .5. 定义AB=x|xA,且xB,若M=1,2,3,4,5,N=2,4,8,则NM= . 课后作业 1. 已知全集I=,若,求实数.2. 已知全集U=R,集合A=, 若,试用列举法表示集合A1.1 集合(复习) 学习目标 1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2. 能使用数轴分析、Venn图表达集合的运算,体会直观图示对理解抽象概念的作用. 学习过程 一、课前准备(复习教材P2 P14,找出疑惑之处)复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言? ; ; .复习2:交、并
24、、补有如下性质.AA ;A ; AA ;A ; ; ; .你还能写出一些吗?二、新课导学 典型例题例1 设U=R,.求AB、AB、CA 、CB、(CA)(CB)、(CA)(CB)、C(AB)、C(AB).小结: (1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点;(2)由以上结果,你能得出什么结论吗?例2已知全集,若,求集合A、B.小结: 列举法表示的数集问题用Venn图示法、观察法.例3 若,求实数a、m的值或取值范围变式:设,若BA,求实数a组成的集合、. 动手试试练1. 设,且AB2,求AB.练2. 已知A=x|x3,B=x|4x+m0,当AB时,求实数m的取值范围。练3.
25、 设Axx2axa2190,Bxx25x60,Cxx22x80(1)若AB,求a的值;(2)若AB,AC,求a的值三、总结提升 学习小结1. 集合的交、并、补运算.2. Venn图示、数轴分析. 知识拓展集合中元素的个数的研究:有限集合A中元素的个数记为, 则.你能结合Venn图分析这个结论吗?能再研究出吗? 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 如果集合A=x|ax22x1=0中只有一个元素,则a的值是( ).A0 B0 或1 C1 D不能确定2. 集合A=x|x=2n,nZ,B
26、=y|y=4k,kZ,则A与B的关系为( ).AAB BAB CA=B DAB3. 设全集,集合,集合,则( ).A B C D4. 满足条件1,2,3M1,2,3,4,5,6的集合M的个数是 .5. 设集合,则 . 课后作业 1. 设全集,集合,且,求实数p、q的值.2. 已知集合A=x|x2-3x+2=0,B=x|x2-ax+3a-5=0.若AB=B,求实数a的取值范围.1.2.1 函数的概念(1) 学习目标 1. 通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2. 了解构成函数的要素;3
27、. 能够正确使用“区间”的符号表示某些集合. 学习过程 一、课前准备(预习教材P15 P17,找出疑惑之处)复习1:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?复习2:(初中对函数的定义)在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量. 表示方法有:解析法、列表法、图象法.二、新课导学 学习探究探究任务一:函数模型思想及函数概念问题:研究下面三个实例: A. 一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是. B. 近几十年,大气层中臭氧迅速
28、减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况. C. 国际上常用恩格尔系数(食物支出金额总支出金额)反映一个国家人民生活质量的高低. “八五”计划以来我们城镇居民的恩格尔系数如下表.年份19911992199319941995恩格尔系数%53.852.950.149.949.9讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作:.新知:函数定义.设A、B是非空数集,如果按照某种
29、确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:. 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range).试试:(1)已知,求、的值.(2)函数值域是 .反思:(1)值域与B的关系是 ;构成函数的三要素是 、 、 .(2)常见函数的定义域与值域.函数解析式定义域值域一次函数二次函数,其中反比例函数探究任务二:区间及写法新知:设a、b是两个实数,且aa= 、x|xb= 、x|xb= .(2)= .(3)函数y的定义域 ,值域是 .
30、(观察法) 典型例题例1已知函数.(1)求的值;(2)求函数的定义域(用区间表示);(3)求的值.变式:已知函数.(1)求的值;(2)求函数的定义域(用区间表示);(3)求的值. 动手试试练1. 已知函数,求、的值.练2. 求函数的定义域.三、总结提升 学习小结函数模型应用思想;函数概念;二次函数的值域;区间表示. 知识拓展求函数定义域的规则: 分式:,则; 偶次根式:,则; 零次幂式:,则. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知函数,则( ). A. 1 B. 0 C. 1
31、 D. 22. 函数的定义域是( ). A. B. C. D. 3. 已知函数,若,则a=( ). A. 2 B. 1 C. 1 D. 24. 函数的值域是 .5. 函数的定义域是 ,值域是 .(用区间表示) 课后作业 1. 求函数的定义域与值域.2. 已知,.(1)求的值;(2)求的定义域;(3)试用x表示y. 1.2.1 函数的概念(2) 学习目标 1. 会求一些简单函数的定义域与值域,并能用“区间”的符号表示;2. 掌握判别两个函数是否相同的方法. 学习过程 一、课前准备(预习教材P18 P19,找出疑惑之处)复习1:函数的三要素是 、 、 .函数与y3x是不是同一个函数?为何?复习2:
32、用区间表示函数ykxb、yaxbxc、y的定义域与值域,其中,.二、新课导学 学习探究探究任务:函数相同的判别讨论:函数y=x、y=()、y=、y=、y=有何关系?试试:判断下列函数与是否表示同一个函数,说明理由? = ; = 1. = x; = . = x 2; = . = | x | ;= .小结: 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数);两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关. 典型例题例1 求下列函数的定义域 (用区间表示).(1);(2);(3).试试:求下列函数的定义域 (用区间表示).(1);(2)
33、.小结: (1)定义域求法(分式、根式、组合式);(2)求定义域步骤:列不等式(组) 解不等式(组).例2求下列函数的值域(用区间表示):(1)yx3x4; (2);(3)y; (4).变式:求函数的值域.小结:求函数值域的常用方法有:观察法、配方法、拆分法、基本函数法. 动手试试练1. 若,求.练2. 一次函数满足,求.三、总结提升 学习小结1. 定义域的求法及步骤;2. 判断同一个函数的方法;3. 求函数值域的常用方法. 知识拓展对于两个函数和,通过中间变量u,y可以表示成x的函数,那么称它为函数和的复合函数,记作. 例如由与复合. 学习评价 自我评价 你完成本节导学案的情况为( ). A
34、. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 函数的定义域是( ). A. B. C. R D. 2. 函数的值域是( ). A. B. C. D. R3. 下列各组函数的图象相同的是( )A. B.C. D.4. 函数f(x) = +的定义域用区间表示是 .5. 若,则= . 课后作业 1. 设一个矩形周长为80,其中一边长为x,求它的面积y关于x的函数的解析式,并写出定义域.2. 已知二次函数f(x)=ax2+bx(a,b为常数,且a0)满足条件f(x1)=f(3x)且方程f(x)=2x有等根,求f(x)的解析式.1.2.2 函数的表示法(
35、1) 学习目标 1. 明确函数的三种表示方法(解析法、列表法、图象法),了解三种表示方法各自的优点,在实际情境中,会根据不同的需要选择恰当的方法表示函数;2. 通过具体实例,了解简单的分段函数,并能简单应用. 学习过程 一、课前准备(预习教材P19 P21,找出疑惑之处)复习1:(1)函数的三要素是 、 、 .(2)已知函数,则 ,= ,的定义域为 .(3)分析二次函数解析式、股市走势图、银行利率表的表示形式.复习2:初中所学习的函数三种表示方法?试举出日常生活中的例子说明.二、新课导学 学习探究探究任务:函数的三种表示方法讨论:结合具体实例,如:二次函数解析式、股市走势图、银行利率表等,说明
36、三种表示法及优缺点.小结: 解析法:用数学表达式表示两个变量之间的对应关系. 优点:简明;给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 典型例题例1 某种笔记本的单价是2元,买x (x1,2,3,4,5)个笔记本需要y元试用三种表示法表示函数.变式:作业本每本0.3元,买x个作业本的钱数y(元). 试用三种方法表示此实例中的函数.反思:例1及变式的函数图象有何特征?所有的函数都可用解析法表示吗?例2 邮局寄信,不超过20g重时付邮资0.5元,超过20g重而不超过40
37、g重付邮资1元. 每封x克(0x40)重的信应付邮资数y(元). 试写出y关于x的函数解析式,并画出函数的图象.变式: 某水果批发店,100 kg内单价1元kg,500 kg内、100 kg及以上0.8元kg,500 kg及以上0.6元kg,试写出批发x千克应付的钱数y(元)的函数解析式.试试:画出函数f(x)=|x1|x2|的图象.小结:分段函数的表示法与意义(一个函数,不同范围的x,对应法则不同). 在生活实例有哪些分段函数的实例? 动手试试练1. 已知,求、的值. 练2. 如图,把截面半径为10 cm的圆形木头锯成矩形木料,如果矩形的边长为,面积为,把表示成的函数.三、总结提升 学习小结
38、1. 函数的三种表示方法及优点;2. 分段函数概念;3. 函数图象可以是一些点或线段. 知识拓展任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 如下图可作为函数的图象的是( ). A. B. C. D.2. 函数的图象是( ). A. B. C. D.3. 设,若,则x=( ) A. 1 B. C. D. 4. 设函数f(x),则 .5. 已知二次函数满足,且图象在轴上的截距为0,最小值为1,则函数的解析式为 . 课后作业 1. 动点P从单位正方形ABCD顶点A开始运动一周,设沿正方形ABCD的运动路程为自变量x,写出P点与A点距离y与x的函数关系式,并画出函数的图象.2. 根据下列条件分别求出函数的解析式.(1); (2).1.2.2 函数的表示法(2) 学习目标 1. 了解映射的概念及表示方法;2. 结合简单的对应图示,了解一一映射的概念;3. 能解决简单函数应用问题. 学习过程 一、课前准备(预习教材P22 P23,找出疑惑之处)复习:举例初中已经学习过的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商务合同协议翻译
- 合同中安全协议
- 纹眉客户合同协议
- 新的安全协议合同书
- 没购房合同怎么签订协议
- 供货协议合同价格调整
- 合同条件更改协议
- 车子承包协议合同
- 木材回收合同协议
- 合同不续约协议
- 科大讯飞财务报表分析报告
- 心房颤动诊断和治疗中国指南(2023) 解读
- 2024年高考生物三年高考真题及模拟题分类汇编专题16实验与探究含解析
- 地形图测绘报告
- 《新媒体运营》高职新媒体运营全套教学课件
- 混凝土面板堆石坝工程中溢洪道水力设计计算书
- 参观河南省博物院
- 2024水电站股权转让协议
- 可穿戴式设备安全可靠性技术规范 头戴式设备
- 《网络营销》-课件:33病毒营销
- 广东省深圳市深中共同体联考2023-2024学年八年级下学期期中历史试卷(解析版)
评论
0/150
提交评论