版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章集合与函数概念 1.1集合 1.1.1集合的含义与表示 第1课时集合的含义,【自主预习】 主题1:元素与集合的含义及集合相等 观察下列实例,回答下面的问题: 某集团的所有员工; 不等式组 的整数解; 一元二次方程x2-3x+2=0的实数根.,(1)上述实例中的研究对象各是什么?这些研究对象都是确定的吗? 提示:它们的研究对象分别是员工、整数解、实数根.这些实例中的研究对象都是确定的.,(2)若把实例中的研究对象称为元素,每个实例中元素的总体分别称为一个集合,那么实例表示的集合有什么关系? 提示:实例中的元素分别只有1和2,是一样的,称这两个集合相等.,通过以上分析概括你对集合的认识: 含
2、义:_称为元素;_ _叫做集合. 特性:对于给定的集合,它的元素是_的并且是_ _的.,我们把研究对象,一些元素组成的总,体,确定,互,不相同, 符号表示:元素:用_表示;集合:用_ _表示.,a,b,c,A,,B,C,主题2:元素与集合的关系及常用数集 1.结合教材P3中间阴影部分内容,完成下面填空: 提示:常用的数集及其记法,N,N*或N+,Z,Q,R,2.如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b表示高一(6)班的一位同学,那么a,b与集合A分别有什么关系?如何表示?,用文字语言描述:_是集合A的元素;_不是集合A的元素. 用符号语言描述:_. ,a,
3、b,aA;bA,元素与集合的关系:(1)属于:如果a是集合A中的元素, 就说_,记作_. (2)不属于:如果a不是集合A中的 元素,就说_,记作_,a属于集合A,aA,a不属于集合A,aA,【深度思考】 结合教材P2倒数第三行至P3第二行文字思考:你认为 判断一组对象是否组成集合的标准是什么? 一、确定性:_ _. 二、互异性:_.,判断一组对象能否组成集合,关键看该组,对象是否满足确定性,集合中的元素是互不相同的,【预习小测】 1.方程x2=1的解组成的集合为A,则下列各式正确的 是() A.0AB.1AC.-1AD.1=A 【解析】选C.由x2=1,得x=1,所以集合A中含有元素-1,1.
4、由元素与集合的关系可知-1A.,2.方程x2-4x+4=0的解集中含有个元素. 【解析】由x2-4x+4=0,得x1=x2=2,故解集中含有一个元素2. 答案:1,3.若集合A中有三个元素x,x+1,1,集合B中也有三个 元素x,x+x2,x2,且集合A等于集合B,求实数x的值. 【解析】因为集合A等于集合B, 所以 解得x=1,经检验x=1不 适合集合元素的互异性,而x=-1适合,所以x=-1.,【备选训练】1.下列各条件中能组成集合的是() A.世界著名科学家B.在数轴上与原点非常近的点 C.所有的直角三角形D.全班成绩好的同学 【解析】选C.A,B,D中的元素都不确定,故都组不成集合,只
5、有C中的元素“直角三角形”是确定的,能组成集合.,2.下列所给关系正确的个数是() R; Q;0N*;|-4|N* A.1B.2C.3D.4 【解析】选B.R显然正确; 是无理数,而Q 是有理数集,所以 Q正确;N*表示正整数集,所以0 N*,故错误;|-4|=4N*,故错误.,3.若集合A中含有两个元素a-3,2a-1,且-3A,则实数a的值为.,【解析】若a-3=-3,则a=0,此时集合A中含有元素 -3,-1满足题意. 若2a-1=-3,则a=-1,此时集合A中的两个元素为-4, -3,满足题意. 综上可知:a=0或-1. 答案:0或-1,【互动探究】 1.某中学高一(1)班“所有聪明的
6、同学”能否组成一个集合?为什么? 提示:不能组成一个集合,因为“聪明”这个标准不明确,而集合中的元素必须是确定的,即给定一个集合,任何元素是不是这个集合中的元素是确定的.,2.由元素1,1,2能否组成一个集合?为什么? 提示:不能.因为集合中的元素是不能重复的,即集合中的元素具有互异性.,3.如何判断一个元素是否是一个集合的元素? 提示:要判断一个元素是否是一个集合的元素,只需看这个元素是否具有这个集合中元素的特性.,【探究总结】 知识归纳:,方法总结:判断元素和集合关系的两种方法 (1)直接法:判断该元素在已知集合中是否出现即可. (2)推理法:判断该元素是否满足集合中元素所具有的特征即可.
7、,【题型探究】 类型一:元素与集合的关系 【典例1】(1)设不等式2x30的解集为M,下列表示正确的是() A.0M,2MB.0M,2M C.0M,2MD.0M,2M,(2)若集合A是由所有形如3a+ b(aZ,bZ)的数组 成的,判断-6+2 是不是集合A中的元素?,【解题指南】(1)先求出不等式的解集M,再判断0,2是否为集合M中的元素. (2)认清集合A中元素的结构特征,然后再注意a,b能否取到整数.,【解析】(1)选B.由2x-30,得x ,又0 , 故0M,2M,故选B. (2)是,因为在3a+ b(aZ,bZ)中,令a=-2,b=2, 可得-6+2 ,所以-6+2 是集合A中的元素
8、.,【规律总结】判断元素与集合关系的两个步骤 (1)确定集合中元素的特征及范围. (2)判断给定元素是否具有已知集合中元素的特征及是否在限定的范围内.,【巩固训练】集合A是由形如m+ n(其中m,nZ)的 数组成的,判断 是不是集合A中的元素. 【解题指南】先对 分母有理化,然后判断化简后 的式子是否具有m+ n(m,nZ)的特征.,【解析】是. 因为2,1Z,所以2+ A, 即 A,所以 是集合A中的元素.,类型二:集合中元素特性的应用 【典例2】已知集合A中含有两个元素a和a2,若1A,求实数a的值. 【解题指南】根据1A,可得a=1或a2=1,再根据集合中元素的互异性进行检验.,【解析】
9、因为1A,所以a=1或a2=1,即a=1,当a=1时,a=a2,集合A中有一个元素,所以a1;当a=-1时,集合A中含有两个元素1,-1,符合互异性,所以a=-1.,【延伸探究】 1.(变换条件)本例若去掉条件“1A”,其他条件不变,则实数a的取值范围是什么? 【解析】由题意a和a2组成两个元素的集合,则aa2,解得a0且a1.,2.(变换条件)本例若将条件“1A”改为“2A”, 其他条件不变,求实数a的值. 【解析】因为2A,所以a=2或a2=2,即a=2或a= . 当a=2时,a2=4,满足条件;当a=- 时,a2=2满足条 件;当a= 时,a2=2满足条件,所以a=2或a= .,【规律总结】根据集合中元素的特性求解字母取值(范围)的三个步骤,【巩固训练】已知集合A中含有1,0,x这三个元素. (1)求实数x的取值范围. (2)若x2A,求实数x的值.,【解析】(1)由集合中元素的互异
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《对乙酰氨基酚生产》课件
- 《工程招标流程》课件
- 围挡制作安装合同范本模板
- 《对财富的认识图》课件
- 个人部分股权转让协议书
- 铝材供应链优化合同(2024年)
- 大卫课件教学
- 监控设备采购安装合同范文完整版
- 2024年度医疗健康数据处理合同
- 五年级下册英语书教育课件
- T SISTB002-2020 智慧楼宇评价指标体系3.0
- 例谈思政教育在中学数学中的融合与实施 论文
- 初中数学课件《切割线定理》
- 相似品管理规范
- 老版入团志愿书表格(空白)
- 陶棍幕墙施工方案
- 科学版五年级《体育与健康基础知识-体育活动与营养》说课稿
- 混凝土减水剂测试指标培训课件
- 高标准农田跟踪审计投标合理化建议
- 谷子栽培学课件
- 2022版18项医疗核心制度
评论
0/150
提交评论