




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.2.1对数及其运算(一)教学目标:理解对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用教学重点:理解对数的概念、常用对数的概念.教学过程:1、对数的概念:复习已经学习过的运算指出:加法、减法,乘法、除法均为互逆运算,指数运算与对数运算也为互逆运算:若 ,则 叫做以 为底 的对数。记作:()2、对数的性质(1) 零和负数没有对数,即 中N必须大于零;(2) 1的对数为0,即(3) 底数的对数为1,即3、对数恒等式:4、常用对数:以10为底的对数叫做常用对数,记为:5、例子:(1) 将下列指数式写成对数式 (2) 将下列对数式写成指数式(3) 用计算器求值课堂练
2、习:教材第104页 练习A、B小结:本节课学习了对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用课后作业:习题32A,13.2.1对数及其运算(二)教学目标:理解对数的运算性质,掌握对数的运算法则教学重点:掌握对数的运算法则教学过程:1、 复习:(1)、对数的概念,(2)、对数的性质,(3)、对数恒等式2、 推导对数运算法则: 3例子:1、求下列各式的值:2、计算:计算:3、用logax,logay,logaz表示下列各式:解(注意(3)的第二步不要丢掉小括号)4、5、 课堂练习:教材第107页 练习A、B小结:本节课学习了对数的运算性质课后作业:习题32A,4
3、、63.2.1对数及其运算(三)教学目标:掌握对数的换底公式教学重点:掌握对数的换底公式教学过程:1、首先可以通过实例研究当一个对数式的底数改变时,整个对数式会发生什么变化?如求 设 ,写成指数式是 ,取以 为底的对数得 即在这个等式中,底数3变成 后对数式将变成等式右边的式子一般地 关于对数换底公式的证明方法有很多,这里可以仿照刚才具体的例子计算过程证明对数换底公式,证明的基本思路就是借助指数式换底公式的意义是把一个对数式的底数改变可将不同底问题化为同底,便于使用运算法则由换底公式可得:(1) (2) ( 2、例题:1、 证明:证明:设 ,则:,从而 ; , ,即:。(获证)2、已知:求证:证明:由换底公式 ,由等比定理得:,。3、设,且,1 求证:;2 比较的大小。1 证明:设,取对数得: ,;2 ,又,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年一月专卖店电子发票开具合同区块链存证规范
- 2024年2月潮汐电站护坡砂砾石耐盐雾侵蚀验收合同
- 2024年6月份智能称重系统防作弊校验条款
- 2025年核磁共振岩心测试仪项目合作计划书
- 持续创新社团工作创新计划
- 学期教学工作报告总结执行情况安排计划
- 业务流程梳理的年度执行计划
- 前台文员优化会议安排的策略计划
- 2025年金融数据加密机项目建议书
- 财务预算编制原则计划
- 隐患排查统计分析报告
- 给小学数学教师的建议
- 中国古代文学史二复习资料
- 2024年重庆发展投资有限公司招聘笔试参考题库含答案解析
- 成熟生产线评价报告
- 足球准确传球训练技巧:提高准确传球能力掌控比赛节奏
- 自救器培训(2023年煤矿安全生产培训教师培训班随堂课程设计)
- 成人癌性疼痛护理指南解读
- 供应链安全风险评估与管理项目风险评估报告
- 2023年-2024年电子物证专业考试复习题库(含答案)
- 北师大版数学三年级下册《分一分》(一)课件
评论
0/150
提交评论