高中数学 第二章 函数 2.2 对函数的进一步认识 2.2.2 函数的表示法学案北师大版必修_第1页
高中数学 第二章 函数 2.2 对函数的进一步认识 2.2.2 函数的表示法学案北师大版必修_第2页
高中数学 第二章 函数 2.2 对函数的进一步认识 2.2.2 函数的表示法学案北师大版必修_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2.2 函数的表示方法自学目标1.了解表示函数有三种基本方法:图象法、列表法、解析法;理解函数关系的三种表示方法具有内在的联系,在一定的条件下是可以互相转化的.2.了解求函数解析式的一些基本方法,会求一些简单函数的解析式.3.了解简单的分段函数的特点以及应用.知识要点1.表示函数的方法,常用的有:解析法,列表法和图象法.在表示函数的基本方法中,列表法就是直接列表表示函数,图象法就是直接作图表示函数,而解析法是通过函数解析式表示函数.2.求函数的解析式,一般有三种情况根据实际问题建立函数的关系式;已知函数的类型求函数的解析式;运用换元法求函数的解析式;3分段函数在定义域内不同部分上,有不同的

2、解析表达式的函数通常叫做分段函数;注意:分段函数是一个函数,而不是几个函数;分段函数的定义域是的不同取值范围的并集;其值域是相应的的取值范围的并集例题分析例1 购买某种饮料x听,所需钱数为y元若每听2元,试分别用解析法、列表法、图象法将y表示x()成的函数,并指出该函数的值域例2(1)已知f(x)是一次函数,且f(f(x)=4x-1,求f(x)的表达式;(2)已知f(2x-3)= +x+1,求f(x)的表达式;例3画出函数的图象,并求,变题 作出函数 的图象变题 作出函数f(x)=x+1+x-2的图象变题 求函数f(x)=x+1+x-2的值域变题 作出函数f(x)=x+1+x-2的图象,是否存

3、在使得f()=?通过分类讨论,将解析式化为不含有绝对值的式子作出f(x)的图象 由图可知,的值域为,而,故不存在,使例4已知函数(1)求f(-3)、ff(3) ;(2)若f(a)= ,求a的值 课堂练习1用长为30cm的铁丝围成矩形,试将矩形面积S()表示为矩形一边长x(cm)的函数,并画出函数的图象2.若f(f(x)=2x1,其中f(x)为一次函数,求f(x)的解析式3.已知f(x-3),求f(x+3) 的表达式4如图,根据y=f(x) ()的图象,写出y=f(x)的解析式归纳反思1. 函数关系的表示方法主要有三种: 解析法,列表法和图象法.这三种表示方法各有优缺点,千万不能误认为只有解析式表示出来的对应关系才是函数;2. 函数的解析式是函数的一种常用的表示方法,要求两个变量间的函数关系,一是要求出它们之间的对应法则,二是要求出函数的定义域;3. 无论运用哪种方法表示函数,都不能忽略函数的定义域;对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论