电感式传感器教学用_第1页
电感式传感器教学用_第2页
电感式传感器教学用_第3页
电感式传感器教学用_第4页
电感式传感器教学用_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、4.1 自感式电感传感器 4.2 差动变压器式传感器 4.3 电涡流式传感器,第4章 电感式传感器,第4章 电感式传感器,电感式传感器的工作基础:电磁感应 即利用线圈电感或互感的改变来实现非电量测量。,分为自感式、互感式、电涡流式等 特点: 工作可靠、寿命长 灵敏度高,分辨力高 精度高、线性好 性能稳定、重复性好,各种电感式传感器,4.1 自感式电感传感器,一、工作原理 变磁阻式传感器的结构如下图所示。它由线圈、铁芯和衔铁三部分组成。铁芯和衔铁由导磁材料如硅钢片或坡莫合金制成。,在铁芯和衔铁之间有气隙, 气隙厚度为, 传感器的运动部分与衔铁相连。当衔铁移动时, 气隙厚度发生改变, 引起磁路中磁

2、阻变化, 从而导致电感线圈的电感值变化, 因此只要能测出这种电感量的变化, 就能确定衔铁位移量的大小和方向。,上式中: L该元件的自感或电感; 线圈总磁链; I 通过线圈的电流; W线圈的匝数; 穿过线圈的磁通。 由磁路欧姆定律, 得:,根据电感定义, 线圈中电感量可由下式确定:,式中: Rm磁路总磁阻。,引入知识,环形线圈如下图,其中媒质是均匀的,磁导率为,试计算线圈内部的磁通 。,根据安培环路定律,有,设磁路的平均长度为l,则有,环形线圈如下图,其中媒质是均匀的,磁导率为,试计算线圈内部的磁通 。,式中: F=WI磁通势,由其产生磁通; Rm 磁阻,表示磁路对磁通的阻碍作用; l为磁路的平

3、均长度; S为磁路的截面积。,即有:,2.磁路的欧姆定律,若某磁路的磁通为,磁通势为F,磁阻为Rm,则,此即磁路的欧姆定律。,对于变隙式传感器, 因为气隙很小, 所以可以认为气隙中的磁场是均匀的。若忽略磁路磁损, 则磁路总磁阻为 式中: 1铁芯材料的导磁率; 2衔铁材料的导磁率; L1磁通通过铁芯的长度; L2磁通通过衔铁的长度; A1铁芯的截面积; A2衔铁的截面积;0空气的导磁率;,由磁路欧姆定律, 得:,式中: Rm磁路总磁阻。,A0气隙的截面积; 气隙的厚度。,通常气隙磁阻远大于铁芯和衔铁的磁阻, 即: 则上式可近似为: 又因为:,所以:,并且, 上式表明, 当线圈匝数为常数时, 电感

4、L仅仅是磁路中磁阻Rm的函数, 只要改变或A0均可导致电感变化, 因此自感式传感器又可分为变气隙厚度的传感器和变气隙面积A0的传感器。 使用最广泛的是变气隙厚度式电感传感器。 二、 输出特性,由上式可知,变气隙厚度(变隙)式电感传感器的L与之间是非线性关系,特性曲线如下图所示。,设电感传感器初始气隙为0, 初始电感量为L0, 衔铁位移引起的气隙变化量为, 当衔铁处于初始位置时,初始电感量为:,当衔铁上移时, 传感器气隙减小, 即=0-, 则此时输出电感为 L = L0+L, 则:,电感的变化量为:,电感的变化量为:,则:,,当,时,,可将上式展开成泰勒级数形式:,同理,当衔铁向下移动时,传感器

5、的气隙将增大,即为:,同理,当衔铁向下移动时,传感器的气隙将增大,即为:,这时的电感量为:,电感的变化量为:,则:,,当,可将上式展开成级数:,当衔铁上移时:,当衔铁向下移动时:,对上两式作线性处理,即忽略高次项后,可得,则L与近似成比例关系,因此高次项的存在是造成非线性的原因。,忽略高次项后,可得,则L与近似成比例关系,因此高次项的存在是造成非线性的原因。,但是,当气隙相对变化/0很小时,高次项将迅速,减小,非线性可以得到改善,然而这又会使传感器的测量范围(即衔铁的允许工作位移)变小,所以,对输出特性线性度的要求和对测量范围的要求是相互矛盾的。,因此变隙式电感式传感器适用于测量微小位移的场合

6、,一般对于变气隙长度电感传感器,为了得到较好的线性特性,取/0=0.10.2,这时L=f()可近似看作一条直线。,忽略高次项后,可得:,灵敏度为:,为了减小非线性误差, 实际测量中广泛采用差动变隙式电感传感器。,差动变隙式电感传感器,由上图可知, 差动变隙式电感传感器由两个相同的电感线圈1、2合用一个衔铁和相应的磁路组成, 测量时, 衔铁通过导杆与被测位移量相连。,当被测体上下移动时, 导杆带动衔铁也以相同的位移上下移动, 使两个磁回路中磁阻发生大小相等, 方向相反的变化, 导致一个线圈的电感量增加, 另一个线圈的电感量减小, 形成差动形式。,差动变隙式电感传感器,当衔铁往上移动时, 两个线圈

7、的电感变化量L1、L2分别是:,差动变隙式电感传感器,当差动使用时, 两个电感线圈接成交流电桥的相邻桥臂, 另两个桥臂由电阻组成, 电桥输出电压与L有关, 其具体表达式为:,对上式进行线性处理,忽略高次项得:,灵敏度K0为:,对上式进行线性处理,忽略高次项得:,灵敏度K0为:,比较单线圈和差动两种变间隙式电感传感器的特性, 可以得到如下结论: 差动式比单线圈式的灵敏度高一倍。, 差动式的非线性项等于单线圈非线性项乘以(/0)因子, 因为(/0)1, 所以,差动式的线性度得到明显改善。 为了使输出特性能得到有效改善, 构成差动的两个变隙式电感传感器在结构尺寸、材料、电气参数等方面均应完全一致。,

8、三、测量电路 电感式传感器的测量电路有交流电桥式、交流变压器式以及谐振式等几种形式。,1. 自感式电感传感器的等效电路 从电路角度看,自感式电感传感器的线圈并非是纯电感,该线圈由有功分量和无功分量两部分组成。 有功分量包括:线圈线绕电阻和涡流损耗电阻及磁滞损耗电阻。这些都可折合成为有功电阻,其总电阻可用R来表示。,引入知识,在交流铁心线圈中,处于交变磁通下的铁心内的功率损耗称铁损,用PFe表示。,铁损由涡流和磁滞产生。,涡流损耗(Pe),涡流损耗: 由涡流所产生的功率损耗。,涡流:当线圈中通有交流电时,它所产生的磁通也是交变的。因此,不仅要在线圈中产生感应电动势,而且在铁心内也要产生感应电动势

9、和感应电流,这种感应电流称为涡流。涡流在垂直于磁通的平面内环流着。,涡流损耗转化为热能,引起铁心发热。,减少涡流损耗措施:,在顺磁场方向铁心可由彼此绝缘的钢片叠成,这样就可以限制涡流只能在较小的截面内流通。,减少涡流损耗措施:,通常所用的硅钢片中含有少量的硅,因而电阻率较大,这也可以使涡流减小。,但涡流在一些场合下也有其有利的一面:例如利用涡流的热效应来冶炼金属。,磁滞损耗(Ph),由磁滞所产生的能量损耗称为磁滞损耗(Ph)。,磁滞损耗的大小: 单位体积内的磁滞损耗正比与磁滞回线的面积和磁场交变的频率f。,磁滞损耗转化为热能,引起铁心发热。,减少磁滞损耗的措施: 选用磁滞回线狭小的磁性材料制作

10、铁心。变压器和电机中使用的硅钢等材料的磁滞损耗较低。,1. 自感式电感传感器的等效电路 从电路角度看,自感式电感传感器的线圈并非是纯电感,该线圈由有功分量和无功分量两部分组成。 有功分量包括:线圈线绕电阻和涡流损耗电阻及磁滞损耗电阻。这些都可折合成为有功电阻,其总电阻可用R来表示。 无功分量包括:线圈的自感L,绕线间的分布电容,为简便起见可视为集中参数,用C来表示。 于是可以得到自感式电感传感器的等效电路如下图所示:,自感式电感传感器的等效电路,则线圈的等效阻抗为:,于是可以得到自感式电感传感器的等效电路如下图所示:,自感式电感传感器的等效电路,则线圈的等效阻抗为:,将上式有理化并应用品质因数

11、Q=L/R,可得:,则并联电容的存在,使得有效品质因数Q值减小。,将上式有理化并应用品质因数Q=L/R,可得:,则有效品质因数为:,令:,则:,当Q2LC(即2fcR1)且2LC1时,上式可近似为:,令:,线圈的等效阻抗近似为:,考虑分布电容时,电感传感器的有效串联损耗电阻和有效电感都增加了,而线圈的有效品质因数Q却减小。 电感传感器有效灵敏度为:,考虑分布电容后,电感传感器的灵敏度增加了。从而引起传感器性能变化。,因此在测量中若更换连接电缆线的长度,在激励频率较高时则应对传感器的灵敏度重新进行校准。,2. 交流电桥式测量电路,下图所示为交流电桥测量电路, 把传感器的两个线圈作为电桥的两个桥臂

12、Z1和Z2, 另外二个相邻的桥臂用纯电阻R代替, 对于高Q值(Q = L/R)的差动式电感传感器, 线圈的电感远远大于线圈的有功电阻,即LR,其输出电压为:,式中:Z0衔铁在中间位置时单个线圈的复阻抗; Z衔铁偏离中心位置时两线圈阻抗的变化量; L0衔铁在中间位置时单个线圈的电感; L单线圈电感的变化量。,交流电桥式测量电路,由前面对差动变隙式电感传感器的原理的介绍可知,忽略高次项后:,又,则,电桥输出电压与成正比关系。,3. 变压器式交流电桥,交流电桥式测量电路,变压器式交流电桥,变压器式交流电桥测量电路如右图所示,电桥两臂Z1、Z2为传感器线圈阻抗, 另外两桥臂为交流变压器次级线圈的1/2

13、 阻抗。当负截阻抗为无穷大时, 桥路输出电压为:,3. 变压器式交流电桥,变压器式交流电桥,变压器式交流电桥测量电路如右图所示,电桥两臂Z1、Z2为传感器线圈阻抗, 另外两桥臂为交流变压器次级线圈的1/2 阻抗。当负截阻抗为无穷大时, 桥路输出电压为:,测量时被测件与传感器衔铁相连,当传感器的衔铁处于中间位置, 即Z1=Z2=Z时,有=0, 电桥平衡。 当传感器衔铁上移时, 即Z1=Z+Z, Z2=Z-Z, 此时,变压器式交流电桥,当传感器衔铁下移时, 则 Z1=Z-Z, Z2=Z+Z, 此时,当传感器衔铁上移时, 即 Z1=Z+Z, Z2=Z-Z, 此时:,由以上分析可知, 衔铁上下移动相同

14、距离时, 输出电压的大小相等, 但方向相反, 由于 是交流电压, 输出指示无法判断位移方向, 因此必须配合相敏检波电路来解决。 ,谐振式测量电路有谐振式调幅电路和谐振式调频电路。,4. 谐振式测量电路,(1) 谐振式调幅电路,在调幅电路中,传感器电感L与电容C,变压器原边串联在一起, 接入交流电源 , 变压器副边将有电压 输出, 输出电压的频率与电源频率相同。,谐振式调幅电路,下图(b)中曲线1为图(a)回路的谐振曲线,其中L0为谐振点的电感值。若激励源的频率为f,则可确定其工作在A点。当传感器线圈电感量发生变化时,谐振曲线将左右移动,工作点就在一频率的纵坐标直线上移动(例如移至B点),于是输

15、出电压的幅值就发生相应变化。,此电路灵敏度很高,但线性差,适用于线性度要求不高的场合。,谐振式调幅电路,(2) 谐振式调频电路,调频电路的基本原理是传感器电感L变化将引起输出电压频率的变化。一般是把传感器电感L和电容C接入一个振荡回路中, 其振 荡频率为 。当L变化时, 振荡频率随之变化, 根据f的 大小即可测出被测量的值。下图表示f与L的特性, 它具有明显的非线性关系。,谐振式调频电路,四、零点残余电压,理论上,当传感器的衔铁处于中间位置,即两线圈的阻抗相等,即Z1=Z2时,电桥平衡,输出电压为零。由于传感器线圈阻抗是一个复阻抗,因此为了达到电桥平衡,就要求两线圈的电阻相等,两线圈的电感也相

16、等。 实际上这种情况是不能精确达到的,,因而在传感器输入量为零时,电桥有一个不平衡输出电压UO。,零点残余电压波形,右图给出了桥路输出电压与活动衔铁位移关系的曲线。图中虚线为理论特性曲线,实线为实际特性曲线。 传感器在零位移时的输出电压称为零点残余电压,记作UO。,零点残余电压波形,零点残余电压主要由基波分量和高次谐波分量组成。产生零点残余的原因大致有如下两点: 由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,因此在两电感线圈上的电压幅值和相位不同,从而形成了零点残余电压的基波分量。 由于传感器导磁材料磁化曲线的非线,性(如铁磁饱和、磁滞损耗)使得激励电流与磁通波形不一致,从而形成了零点残

17、余电压的高次谐波分量。 零点残余电压的存在,使得传感器输出特性在零点附近不灵敏,限制了分辨率的提高。,零点残余电压波形,零点残余电压太大,将使线性度变坏,灵敏度下降,甚至会使放大器饱和,堵塞有用信号通过,致使仪器不再反映被测量的变化。 为减小电感式传感器的零点残余电压,可采取以下措施: 在设计和工艺上,力求做到磁路对称,铁芯材料均匀;要经过热处理以除去机械应力和改善磁性;两线 圈绕制要均匀,力求做到几何尺寸与电,气特性保持一致。 在电路上进行补偿。,五、自感式电感传感器的应用,下图是变隙电感式压力传感器的结构图。它由膜盒、 铁芯、 衔铁及线圈等组成, 衔铁与膜盒的上端连在一起。,当压力进入膜盒时, 膜盒的顶端在压力P的作用下产生与压力P大小成正比的位移。于是衔铁也发生移动, 从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论