




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.3.1 柱体、锥体、台体的表面积和体积,1,在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?,几何体表面积,提出问题,2,正方体、长方体是由多个平面围成的几何体,它们的表面积就是各个面的面积的和,因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积,引入新课,棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?,探究,3,棱柱的侧面展开图是什么?如何计算它的表面积?,h,棱柱的展开图,正棱柱的侧面展开图,4,棱锥的侧面展开图是什么?如何计算它的表面积?,棱锥的展开图,5,棱锥的侧面展开图
2、是什么?如何计算它的表面积?,棱锥的展开图,侧面展开,正棱锥的侧面展开图,6,棱台的侧面展开图是什么?如何计算它的表面积?,棱锥的展开图,侧面展开,正棱台的侧面展开图,7,棱柱、棱锥、棱台的表面积,棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和,8,例1 已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积 ,分析:四面体的展开图是由四个全等的正三角形组成,BC=a,,四面体S-ABC 的表面积为 ,交BC于点D,解:先求 的面积,过点S作 ,典型例题,9,圆柱的表面积,圆柱的侧面展开图是矩形,r
3、为底面半径,l为母线长,10,圆锥的表面积,圆锥的侧面展开图是扇形,r为底面半径,l为母线长,11,圆台的表面积,参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么 ,圆台的侧面展开图是扇环,r, r为上,下底面半径,l为母线长,12,三者之间关系,圆柱、圆锥、圆台三者的表面积公式之间有什么关系?,13,例2如图,一个圆台形花盆盆口直径20cm,盆底直径为15cm,底部渗水圆孔直径为1.5 cm,盆壁长15cm.那么花盆的表面积约是多少平方厘米( 取3.14,结果精确到1 )?,解:由圆台的表面积公式得 花盆的表面积:,答:花盆的表面积约是999 ,典型例题,14,课堂练习,1、一个三棱
4、柱的底面是正三角形,边长为4,侧棱与底面垂直,侧棱长10,求其表面积. 2、一个圆台,上、下底面半径分别为10、20,母线与底面的夹角为60,求圆台的表面积. 变式:求切割之前的圆锥的表面积 3、若一个圆锥的轴截面是等边三角形,其面积为 ,求这个圆锥的表面积 4、直角三角形,两直角边的长为3 , 4,绕其一边旋转一周所得几何体的表面积是多少?,15,柱体、锥体、台体的表面积,知识小结,圆台,圆柱,圆锥,16,以前学过特殊的棱柱正方体、长方体以及圆柱的体积公式,它们的体积公式可以统一为:,(S为底面面积,h为高),柱体体积,一般棱柱体积也是:,其中S为底面面积,h为棱柱的高,17,圆锥体积等于同
5、底等高的圆柱的体积的 ,圆锥体积,18,探究棱锥与同底等高的棱柱体积之间的关系,棱锥体积,三棱锥与同底等高的三棱柱的关系,19,(其中S为底面面积,h为高),由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是等于 底面面积乘高的 ,经过探究得知,棱锥也是同底等高的棱柱体积的 即棱锥的体积:,锥体体积,20,台体体积,由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差得到圆台(棱台)的体积公式(过程略),根据台体的特征,如何求台体的体积?,21,棱台(圆台)的体积公式,其中 , 分别为上、下底面面积,h为圆台(棱台)的高,台体体积,22,柱体、
6、锥体、台体的体积公式之间有什么关系?,S为底面面积,h为柱体高,S分别为上、下底面面积,h 为台体高,S为底面面积,h为锥体高,台体体积,23,例3 有一堆规格相同的铁制(铁的密度是 )六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个( 取3.14)?,解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即:,答:这堆螺帽大约有252个,典型例题,24,.圆柱的侧面展开图如下左图所示,求此圆柱的体积。,侧面展开图,直观图1,直观图2,25,根据题目要求, 和相关条件 ,求值.,26,已知正四棱台两底面的边长, 和棱台体积,求棱台的高.,27,柱体、锥体、台体的表面积,知识小结,圆台,圆柱,圆锥,28,柱体、锥体、台体的体积,锥体,台体,柱体,知识小结,29,1.3.2 球的表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨越难关2025年注册会计师考试应对试题及答案
- 微生物检验领域的技术挑战及试题及答案
- 细菌抗性机制和检测方法试题及答案
- 项目范围变更的管理流程考点试题及答案
- 项目管理中的文档控制流程与规范试题及答案
- 提高项目管理考试通过率试题及答案
- 注册会计师未来职业规划试题及答案
- 项目管理专业考试内容解析试题及答案
- 2025银行从业资格证考试对策及试题答案
- 微生物文化对创新的推动作用及试题及答案
- 服装吊挂系统培训
- 医疗器械公司规章制度与管理条例
- 2025年航空工业西安飞机工业(集团)有限责任公司招聘笔试参考题库附带答案详解
- 2025年春新沪科版物理八年级下册课件 第九章 浮力 第四节 物体的浮与沉 第1课时 物体的浮沉条件
- 城市更新专题培训
- 灯谜文化知到智慧树章节测试课后答案2024年秋西安交通大学
- 中华人民共和国内河交通安全管理条例
- 文化行业非物质文化遗产保护传承方案
- 小学生交友主题班会课件
- 2024年共青团入团考试题库及答案
- 最优控制理论课件
评论
0/150
提交评论