1.4.4三角函数奇偶性、单调性_第1页
1.4.4三角函数奇偶性、单调性_第2页
1.4.4三角函数奇偶性、单调性_第3页
1.4.4三角函数奇偶性、单调性_第4页
1.4.4三角函数奇偶性、单调性_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、正弦、余弦函数的性质,(奇偶性、单调性),正弦、余弦函数的图像和性质,y=sinx (xR),y=cosx (xR),定义域,值 域,周期性,xR,y - 1, 1 ,T = 2,正弦、余弦函数的奇偶性、单调性,sin(-x)= - sinx (xR),y=sinx (xR),是奇函数,cos(-x)= cosx (xR),y=cosx (xR),是偶函数,定义域关于原点对称,正弦、余弦函数的奇偶性,正弦、余弦函数的奇偶性、单调性,正弦函数的单调性,y=sinx (xR),增区间为 , 其值从-1增至1, 0 ,-1,0,1,0,-1,减区间为 , 其值从 1减至-1, +2k, +2k,kZ

2、, +2k, +2k,kZ,正弦、余弦函数的奇偶性、单调性,余弦函数的单调性,y=cosx (xR),- 0 ,-1,0,1,0,-1,正弦函数的对称性,余弦函数的对称性,x R,x R,-1,1,-1,1,x= 2k时ymax=1 x= 2k+ 时 ymin=-1,周期为T=2,周期为T=2,奇函数,偶函数,在x2k, 2k+ 上都是增函数 , 在x2k- , 2k 上都是减函数 。,(k,0),x = k,正弦、余弦函数的奇偶性、单调性,例1 不通过求值,指出下列各式大于0还是小于0: (1) sin( ) sin( ),(2) cos( ) - cos( ),解:,正弦、余弦函数的奇偶性、单调性,例2 求下列函数的单调区间:,(2) y=2sin(-x ),(1) y=3sin(2x- ),解:,正弦、余弦函数的奇偶性、单调性,(4),解:,所以减区间为,所以增区间为,正弦、余弦函数的奇偶性、单调性,(5) y = -| sin(x+ )|,解:,令x+ =u ,则 y= -|sinu| 大致图像如下:,减区间为,增区间为,即:,y为减函数,正弦、余弦函数的性质,求函数的单调区间:,1. 直接利用相关性质,2. 复合函数的单调性,3. 利用图像寻找单调区间,小 结:,作业:,课本:,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论