下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二数学抛物线及其标准方程教案教学目标:(一) 教学知识点1、 掌握抛物线的定义。2、 抛物线的四种标准方程形式及其对应的焦点和准线 。3、 能根据已知条件熟练地求出抛物线的标准方程。(二)能力训练1、 训练学生化简方程的运算能力2、 培养学生数形结合,分类讨论的思想(三)德育渗透目标1、根据圆锥曲线的统一定义,对学生进行运动、变化、对立、统一的辩证唯物主义思想教育。、通过本节课的学习,使同学们再次感受到数学与生活的美妙结合,进一步体会大自然的奥秘。教学重点1、 抛物线的定义、焦点和准线的求法。2、 抛物线的四种标准方程形式以及p的几何意义。教学难点1、 抛物线的画法。2、 抛物线的四种图形下
2、标准方程及焦点和准线的求法。教学方法:启发引导式教学过程:课题引入:通过抛掷苹果的实验启发学生回忆起对抛物线的了解板书题目抛物线及其标准方程回忆:椭圆,双曲线的第二定义与一个定点的距离和一条定直线的距离的比是常数 e的点的轨迹,当0 e 1时是双曲线,那么当 e = 1时是什么曲线呢?讲授新课一、 1、抛物线定义平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.其中定点F叫做抛物线的焦点,定直线l 叫做抛物线的准线想一想: 定义中的定点与定直线有何位置关系?点F不在直线L上,即设|FK|=P则P02、复习求曲线方程一般步骤:(1)、建系、设点 (2)、写出适合条件P的点M的集合(
3、3)、列方程 (4)、化简 (5)、(证明)3、求抛物线的方程解:设取过焦点F且垂直于准线l的直线为x轴,线段KF的中垂线y轴 设KF= p 则F(),l:x = -。设抛物线上任意一点M(X,Y)定义可知 |MF|=|MN| 即: 化简得 y2 = 2px(p0)二、标准方程把方程 y2 = 2px(p0)叫做抛物线的标准方程其中F(,0),l:x = - 而p 的几何意义是: 焦 点 到 准 线 的 距 离|FK|一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式.1四种抛物线的标准方程对比图形标准方程焦点坐标标准方程2、怎样把抛物线位置特征(标准位置)
4、和方程的特点(标准方程)统一起来? 顶点在原点 对称轴为x轴 对称轴为y轴标准方程为 标准方程为y2=+ 2px x2=+ 2py(p0) (p0)开口与x轴 开口与x轴 开口与y轴 开口与y轴同向 反向: 同向 反向:y2=+2px y2=-2px x2=+2py x2=-2py(p0) (p0) (p0) (p0)例1求下列抛物线的焦点坐标和准线方程(1)y2=6x (2) (3)2x2+5y=0解:(1)因为2p=6,p=3,所以焦点坐标是(,0) 准线方程是x=-(2)因为2p=,p=,所以焦点坐标是(0,), 准线方程是Y=-(3)抛物线方程是2x2+5y=0 , 即x2=-y, 2
5、p= 则焦点坐标 是F(0,-), 准线方程是y=例2根据下列条件写出抛物线的标准方程: (1)焦点坐标是F(0,-2) (2)焦点在直线3x-4y-12=0上 (3) 抛物线过点A(-3,2)。解:(1)因为焦点在y轴的负半轴上,并且p/2=2,p=4, 所以抛物线的方程是x2=-8y(2)由题意,焦点应是直线3x-4y-12=0与x轴或y轴的交点, 即A(4,0)或 B(0,-3)当焦点为A点时,抛物线的方程是y2=16x当焦点为B点时,抛物线的方程是x2=-12y(3) 当抛物线的焦点在y轴的正半轴上时,把A(-3,2)代入x2 =2py,当焦点在x轴的负半轴上时 得 p= 把A(-3,2)代入y2 = -2px,得 p=抛物线的标准方程为x2 =y或y2 = -x反思研究已知抛物线的标准方, 求其焦点坐标和准线方程?先定位, 后定量练习:1、根据下列条件,写出抛物线的标准方程:(1)焦点是F(3,0); (2)准线方程 是x =;(3)焦点到准线的距离是2。2、求下列抛物线的焦点坐标和准线方程: (1)y2 = 20x (2)x2=y(3)2y2 +5x =0 (4)x2 +8y =0小 结 :1、学习了一个概念抛物线2、掌握了一种题型有关抛物线的标准方程和它的焦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡村小学教学培训总结
- 15寸笔记本电脑尺寸
- 315促销活动方案
- 2024年热塑性聚酯PBT工程塑料及合金项目投资申请报告代可行性研究报告
- 2024年硅酮结构密封胶项目资金筹措计划书代可行性研究报告
- 《水生生物学虾》课件
- 《消防安全预案培训》课件
- 《销售经理培训》课件
- 松鼠课件教学课件
- 山西省运城市实验中学2024-2025学年上学期期中测试七年级数学试卷
- 行政执法证专业法律知识考试题库含答案(公路路政)
- 2024-2030年中国语言服务行业发展规划与未来前景展望研究报告
- 2024-2030年白玉蜗牛养殖行业市场发展现状及发展前景与投资机会研究报告
- 广东省深圳市宝安区2023-2024学年七年级下学期期末数学试题(无答案)
- HGT 2902-2024《模塑用聚四氟乙烯树脂》
- 三基三严模拟考试题(附答案)
- 子宫内膜癌-医师教学查房
- 买卖合同解除证明模板
- 美国刑法制度
- 北师大版数学六年级上册第六单元《比的认识》大单元整体教学设计
- 第13课 社会治理与总体国家安全观(课件)-【中职专用】高一思想政治《中国特色社会主义》(高教版2023·基础模块)
评论
0/150
提交评论