一对一辅导导数专题_第1页
一对一辅导导数专题_第2页
一对一辅导导数专题_第3页
一对一辅导导数专题_第4页
一对一辅导导数专题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学思教育学科教师辅导讲义 学员姓名:张曼妮 年 级: 高二 辅导科目: 数 学 学科教师:刘老师课 题 导 数授课时间: 2015-02-08备课时间: 2015-02-01教学目标(1)理解平均变化率的概念;(2)了解瞬时速度、瞬时变化率的概念;(3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(4)会求函数在某点的导数或瞬时变化率;(5)理解导数的几何意义。重点、难点1、导数的概念2、求导公式3、导数的几何意义考点及考试要求导数的几何意义、求导公式,求最值导数基础:1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比

2、值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.以知函数定义域为,的定义域为,则与关系为.2. 函数在点处连续与点处可导的关系:函数在点处连续是在点处可导的必要不充分条件. 常用性质:可导的奇函数函数其导函数为偶函数.可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为4. 求导数的四则运算法则:(为常数)若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.I.(为常数) () I

3、I. 5. 复合函数的求导法则:或6. 函数单调性:函数单调性的判定方法:设函数在某个区间内可导,如果0,则为增函数;如果0,则为减函数注:是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x) = 0,同样是f(x)7. 极值的判别方法:(极值是在附近所有的点,都有,则是函数的极大值,极小值同理)当函数在点处连续时,如果在附近的左侧0,右侧0,那么是极大值;如果在附近的左侧0,右侧0,那么是极小值.考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1(2006年辽宁卷)与方程的曲线关于直线

4、对称的曲线的方程为A. B. C. D. 考查目的本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力解答过程,即:,所以.例2. ( 2006年湖南卷)设函数,集合M=,P=,若MP,则实数a的取值范围是 ( ) A.(-,1) B.(0,1) C.(1,+) D. 1,+)考查目的本题主要考查函数的导数和集合等基础知识的应用能力.解答过程由综上可得MP时, 考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线

5、的公切线.典型例题例3.(2004年重庆卷)已知曲线y=x3+,则过点P(2,4)的切线方程是_.思路启迪:求导来求得切线斜率.解答过程:y=x2,当x=2时,y=4.切线的斜率为4.切线的方程为y4=4(x2),即y=4x4.例4.(2006年安徽卷)若曲线的一条切线与直线垂直,则的方程为( )A B C D考查目的本题主要考查函数的导数和直线方程等基础知识的应用能力.解答过程与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为.例5 ( 2006年重庆卷)过坐标原点且与x2+y2 -4x+2y+=0相切的直线的方程为 ( )A.y=-3x或y=x B. y

6、=-3x或y=-x C.y=-3x或y=-x D. y=3x或y=x 考查目的本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.解答过程解法1:设切线的方程为又故选A.解法2:由解法1知切点坐标为由例6.已知两抛物线, 取何值时,有且只有一条公切线,求出此时公切线的方程.思路启迪:先对求导数.解答过程:函数的导数为,曲线在点P()处的切线方程为,即 曲线在点Q的切线方程是即 若直线是过点P点和Q点的公切线,则式和式都是的方程,故得,消去得方程, 若=,即时,解得,此时点P、Q重合.当时,和有且只有一条公切线,由式得公切线方程为 .考点3 导数的应用中学阶段所涉及的初等函数在其定义

7、域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值);5.构造函数证明不等式.典型例题例7(2006年天津卷)函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A1个 B2个 C3个D 4个考查目的本题主要考查函数的导数和函数图象性质等基础知识的应

8、用能力.解答过程由图象可见,在区间内的图象上有一个极小值点.故选A.例8. 设为三次函数,且图象关于原点对称,当时,的极小值为,求出函数的解析式.思路启迪:先设,再利用图象关于原点对称确定系数.解答过程:设,因为其图象关于原点对称,即,得由,依题意,解之,得.故所求函数的解析式为. 例9.函数的值域是_.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。此例的形式结构较为复杂,采用导数法求解较为容易。解答过程:由得,即函数的定义域为.,又,当时,函数在上是增函数,而,的值域是.例11(2006年山东卷)设函数f(x)=

9、ax(a+1)ln(x+1),其中a-1,求f(x)的单调区间.考查目的本题考查了函数的导数求法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力解答过程由已知得函数的定义域为,且(1)当时,函数在上单调递减,(2)当时,由解得、随的变化情况如下表0+极小值从上表可知当时,函数在上单调递减.当时,函数在上单调递增.综上所述:当时,函数在上单调递减.当时,函数在上单调递减,函数在上单调递增.随堂练习1(2006年北京卷)已知函数在点处取得极大值,其导函数的图象经过点,如图所1. 函数 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3

10、D. 极小值-2,极大值22函数的一个单调递增区间是( )(A) (B) (C) (D) 3已知对任意实数,有,且时,则时( )ABCD4若函数在内有极小值,则( )(A) (B) (C) (D) 5若曲线的一条切线与直线垂直,则的方程为( )A B C D6曲线在点处的切线与坐标轴所围三角形的面积为( )7函数在区间上的最小值为( )A B C D8函数的最大值为( )A B C D9若,则( )A B C D高考题练习1.(2005全国卷文)函数,已知在时取得极值,则=( ) (A)2(B)3(C)4(D)52(2008海南、宁夏文)设,若,则( )A. B. C. D. 3(2005广东)函数是减函数的区间为( )A B C D(0,2)4.(2008安徽文)设函数 则( )A有最大值 B有最小值 C是增函数D是减函数5(2007福建文、理)已知对任意实数x有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论