版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、35平行线的性质定理一、教学目标(一)教学知识点1.平行线的性质定理的证明.2.证明的一般步骤.(二)能力训练要求1.经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.2.结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.(三)情感与价值观要求通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.二、教学重、难点教学难点:理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.三、教具准备投影片六张第一张:议一议(记作投影片A)第二张:想一想(记作投影片B)第三张:符号语言(记作投
2、影片C)第四张:命题(记作投影片D)第五张:证明的一般步骤(记作投影片E)第六张:练习(记作投影片F)四、教学过程设计1.创设情景,引入新课师上节课我们通过推理得证了平行线的判定定理,知道它们的条件是角的大小关系.其结论是两直线平行.如果我们把平行线的判定定理的条件和结论互换之后得到的命题是真命题吗?这节课我们就来研究“如果两条直线平行”.2.讲授新课师在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:两直线平行,同位角相等.下面大家来分组讨论(出示投影片A)议一议:利用这个公理,你能证明哪些熟悉的结论?生甲利用“两条直线平行,同位角相等
3、”可以证明:两条直线平行,内错角相等.生乙还可以证明:两条直线平行,同旁内角互补.师很好.下面大家来想一想:(出示投影片B)(1)根据“两条平行线被第三条直线所截,内错角相等”.你能作出相关的图形吗?(2)你能根据所作的图形写出已知、求证吗?(3)你能说说证明的思路吗?生甲根据上述命题的文字叙述,可以作出相关的图形.如图623.生乙因为“两条平行线被第三条直线所截,内错角相等”这个命题的条件是:两条平行线被第三条直线所截.它的结论是:内错角相等.所以我根据所作的图形.如图623,把这个文字命题改写为符号语言.即:已知,如图623,直线ab,1和2是直线a、b被直线c截出的内错角.求证:1=2.
4、师乙同学叙述得很好.(出示投影片C)(投影片为上面的符号语言)你能说说证明的思路吗?生丙要证明内错角1=2,从图中知道1与3是对顶角.所以1=3,由此可知:只需证明2=3即可.而2与3是同位角.这样可根据平行线的性质公理得证.师丙同学的思路清楚.我们来根据他的思路书写证明过程.哪位同学上黑板来书写呢?(学生举手,请一位同学来)生丁证明:ab(已知)3=2(两直线平行,同位角相等)1=3(对顶角相等)1=2(等量代换)师同学们写得很好.通过证明证实了这个命题是真命题,我们可以把它称为定理.即平行线的性质定理.这样就可以把它作为今后证明的依据.注意:(1)在课本P191中曾指出:随堂练习和习题中用
5、黑体字给出的结论也可以作为今后证明的依据.所以像“对顶角相等”就可以直接应用.(2)这个性质定理的条件是:直线平行.结论是:角的关系.在应用时一定要注意.接下来我们来做一做由判定公理可以证明的另一命题(出示投影片D)两条平行线被第三条直线所截,同旁内角互补. 师来请一位同学上黑板来给大家板演,其他同学写在练习本上.图624生甲已知,如图624,直线ab,1和2是直线a、b被直线c截出的同旁内角.求证:1+2=180.证明:ab(已知)3=2(两直线平行,同位角相等)1+3=180(1平角=180)1+2=180(等量代换)生乙老师,我写的已知、求证与甲同学的一样,但证明过程有一点不一样,他应用
6、了直线平行的性质公理,我应用了直线平行的性质定理.(证明如下)证明:ab(已知)3=2(两直线平行,内错角相等)1+3=180(1平角=180)1+2=180(等量代换)师同学们证得很好,都能学以致用.通过推理的过程得证这个命题“两条平行线被第三条直线所截,同旁内角互补”是真命题.我们把它称为定理,即直线平行的性质定理,以后可以直接应用它来证明其他的结论.到现在为止,我们通过推理得证了两个判定定理和两个性质定理,那么你能说说证明的一般步骤吗?大家分组讨论、归纳.师生共析好,我们来共同归纳一下(出示投影片E)证明的一般步骤:第一步:根据题意,画出图形.先根据命题的条件即已知事项,画出图形,再把命
7、题的结论即求证的内容在图上标出符号,还要根据证明的需要在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步:根据条件、结论,结合图形,写出已知、求证.把命题的条件化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.第三步,经过分析,找出由已知推出求证的途径,写出证明过程.一般情况下,分析的过程不要求写出来,有些题目中,已经画出了图形,写好了已知、求证,这时只要写出“证明”一项就可以了.师接下来我们来做一练习,以进一步巩固证明的过程.3.课堂练习(一)练习(出示投影片F)证明邻补角的平分线互相垂直.已知:如图625,AOB、BOC互为邻补角,OE平分AOB,OF平分
8、BOC.求证:OEOF.证明:OE平分AOB.OF平分BOC(已知)EOB=AOBBOF=BOC(角平分线定义)AOB+BOC=180(1平角=180)EOB+BOF=(AOB+BOC)=90(等式的性质)即EOF=90OEOF(垂直的定义)(二)已知,如图627,ABCD,B=D,求证:ADBC. 过程让学生在证明这个题时,可从多方面考虑,从而拓展了他们的思维,要证:ADBC,可根据平行线的五种判定方法,结合图形,可证同旁内角互补,内错角相等,同位角相等.结果证法一:ABDC(已知)B+C=180(两直线平行,同旁内角互补)B=D(已知)D+C=180(等量代换)ADBC(同旁内角互补,两直线平行)证法二:如图628,延长BA(构造一组同位角)ABCD(已知)1=D(两直线平行,内错角相等)B=D(已知)1=B(等量代换)ADBC(同位角相等,两直线平行)证法三:如图629,连接BD(构造一组内错角)ABCD(已知)1=4(两直线平行,内错角相等)B=D(已知)B1=D4(等式的性质)2=3ADBC(内错角相等,两直线平行)4. 回顾联系,形成结构这节课我们主要研究了平行线的性质定理的证明,总结归纳了证明的一般步骤.1.平行线的性质:公理:两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年新教材高中化学 专题2 研究物质的基本方法 2.1 物质的量浓度(2)教案 苏教版必修1
- 机框catia课程设计
- 机构管理系统课程设计
- 九年级化学下册 10.2 化学元素与人体健康教案 (新版)鲁教版
- 机器人脚踝课程设计
- 机上应急处置课程设计
- 职场信息安全意识提升方案
- 本科jsp毕业课程设计
- 本班读书情况研究报告
- 本地小区清洁外包方案
- 第二章-化学制浆设备-制浆造纸设备课件
- 2023年05月北京师范大学基础教育发展管理部招聘笔试题库含答案详解
- 幼儿园擦伤处理培训ppt
- 晶圆是怎么生产出来的
- 2023版押品考试题库必考点含答案
- 胎心监护(妇产科)-课件
- 零售业财务管理制度实用文档
- 三年级科学期中考试质量分析
- 【本田轿车灯光系统常见故障分析及排除8200字(论文)】
- 数理统计(第三版)课后习题答案
- 急性颅脑损伤急诊科诊治流程-
评论
0/150
提交评论