2.2.1-2.2.2 直线与平面,平面与平面平行的判定定理-悠ppt课件.ppt_第1页
2.2.1-2.2.2 直线与平面,平面与平面平行的判定定理-悠ppt课件.ppt_第2页
2.2.1-2.2.2 直线与平面,平面与平面平行的判定定理-悠ppt课件.ppt_第3页
2.2.1-2.2.2 直线与平面,平面与平面平行的判定定理-悠ppt课件.ppt_第4页
2.2.1-2.2.2 直线与平面,平面与平面平行的判定定理-悠ppt课件.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2.1 直线与平面平行的判定定理,1,1.空间直线与平面的位置关系有哪几种?,2.如何判定一条直线和一个平面平行呢?,复习引入,2,将课本的一边AB紧靠桌面,并绕AB转动,观察AB的对边CD在各个位置时,是不是都与桌面所在的平面平行?,从中你能得出什么结论?,A,B,C,D,CD是桌面外一条直线, AB是桌面内一条直线, 若CD AB ,则CD 桌面.,直线AB、CD与桌面分别是什么位置关系呢?,猜想:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.,观察:,3,若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.,(2)该定理作用:“线线平行线面平行

2、”空间问题“平面化”,即,1.直线与平面平行的判定定理,(1)用该定理判断直线a和平面平行,须具备三个条件: “面外、面内、平行”,(3)应用该定理,关键是在平面内找到一条直线与已知直线a平行.,4,已知:空间四边形ABCD中,E、F分别是AB、AD的中点. 求证:EF/平面BCD.,分析:EF在面BCD外,要证明EF面BCD,只要证明EF和面BCD内一条直线平行即可.,EF和面BCD哪一条直线平行呢?,直线BD,例 求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面.,在ABD中,E、F分别是AB、AD的中点,证明:,EFBD,EF平面BCD,又 EF 平面BCD,,连接BD,,三

3、角形的中位线是常用的找平行线的方法.,5,1.如图,四面体ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点.,(3)你能说出图中满足线面平行位置关系的所有情况吗?,(1)E、F、G、H四点是否共面?,(2)试判断AC与平面EFGH的位置关系;,练习,解:(1)E、F、G、H四点共面.,在ABD中,E、H分别是AB、AD的中点.,EHBD且,同理GFBD且, EHGF且 EHGF,E、F、G、H四点共面.,(2) AC 平面EFGH,6,解:(3)由EFHGAC,得,EF平面ACD,,AC平面EFGH,,HG平面ABC.,由BDEHFG,得,BD平面EFGH,,EH平面BCD,,FG

4、平面ABD.,1.如图,四面体ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点.,(3)你能说出图中满足线面平行位置关系的所有情况吗?,(1)E、F、G、H四点是否共面?,(2)试判断AC与平面EFGH的位置关系;,7,(1)平行,(2)相交,1.平面与平面有几种位置关系?,没有公共点,有一条公共直线,复习引入,8,问1:两个平面平行,那么其中一个平面的直线与另一个平面的位置关系如何?,平行,问2:如果一个平面内的所有直线,都与另一个平面平行,那么这两个平面的位置关系如何?,平行,结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.,当然我们不需要证明所有直线

5、都与另一平面平行,那么需要几条直线才能说明问题呢?,复习引入,2.问题:还可以怎样判定平面与平面平行呢?,9,(两平面平行),(两平面相交),探究,10,(两平面平行),(两平面相交),E,F,直线的条数不是关键!,探究,11,直线相交才是关键!,探究,12,线不在多,重在相交!,2.平面与平面平行的判定定理,若一个平面内两条相交直线分别平行于另一个平面,则这两个平面平行.,(1)该定理中,“两条”,“相交”都是必要条件,缺一不可:,(2)该定理作用:“线面平行面面平行”,(3)应用该定理,关键是在一平面内找到两条相交直线分别与另一平面内两条直线平行即可.,线线平行线面平行面面平行,13,证明

6、:因为ABCDA1B1C1D1为正方体, 所以D1C1A1B1,D1C1A1B1 又ABA1B1,ABA1B1, D1C1AB,D1C1AB, D1C1BA是平行四边形, D1AC1B,,又因为D1A 平面C1BD,CB 平面C1BD.,由直线与平面平行的判定,可知,同理D1B1平面C1BD. 又 D1AD1B1=D1,,所以,平面AB1D1平面C1BD.,D1A平面C1BD,,平行四边形对边平行是常用的找平行线的方法.,14,练2: 正方体ABCD-A1B1C1D1中,若M、N、P、Q分别是棱A1D1,A1B1,BC,CD的中点,求证:平面AMN/平面C1QP.,练1: 正方体ABCD-A1

7、B1C1D1中,若M、N、E、F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN/平面EFDB.,K,变式,练习,15,证明:如图,连接BD1 , 在DBD1中,EF为三角形中位线, 所以EF/BD1 , 又EF 平面ABC1D1 , BD1 平面ABC1D1 所以BD1/平面ABC1D1,例 如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.求证:EF/平面ABC1D1.,16,解:直线BD1/平面AEC,证明如下: 如图,连接BD交AC于O,再连接OE 在DBD1中,OE为三角形中位线, 所以OE/BD1, 又BD1 平面AEC,O

8、E 平面AEC, 故BD1/平面AEC.,P56 2 如图,在长方体ABCD-A1B1C1D1中,E为DD1的中点.试判断BD1与平面AEC的位置关系,并说明理由.,O,注意:在直观图中,线段平行关系不变,可利用此特性先直观地找出平行线的可能所在.,练习,17,如图,已知P、Q是边长为1的正方体ABCD-A1B1C1D1的面AA1DD1 ,面ABCD的中心.求证PQ/ 平面AA1B1B,并求线段的PQ长.,解:(1)连接AB1,在AB1D1中, 显然P,Q分别是AD1,D1B1的中点, 所以,PQ/AB1,且PQ= CD1 又因为PQ 平面AA1B1B CD1 平面AA1B1B 所以 PQ/

9、平面AA1B1B,(2)AB1 = ,PQ=,问:PQ/ 平面DD1C1C?,PQ/C1D,练习,18,C1,A,C,B1,B,M,N,A1,F,证明:取A1C1中点F,连结NF,FC,N为A1B1中点,,M是BC的中点,,NFCM为平行四边形,,故MNCF, MN平面AA1C1C.,例 如图,三棱柱ABC-A1B1C1中,M、 N分别是BC和A1B1的中点,求证:MN平面AA1C1C,19,练习,练1:三棱柱ABC-A1B1C1中,E是AC1上的点,F是CB1上的中点,求证:A1B/平面ADC1 .,法一:线面平行判定定理连接BC1,则DE为ABC1中位线,所以EF/AB,又EF 平面ABC

10、 ,AB 平面ABC,故EF/平面ABC.,法二:由面面平行判定线面平行取CC1的中点G,连接GE和GF,则GE为ACC1中位线,所以GE/AC,又GE 平面ABC ,AC 平面ABC,故GE/平面ABC.,G,同理可证GF/平面ABC.,又GEGF=G,所以面GEF/面ABC.,20,解:依题意点D为边BC的中点. 连接A1C交AC1于E,连接DE. 在ADC1中,DE为三角形中位线, 所以DE/A1B, 又DE 平面ADC1 ,A1B 平面ADC1 故A1B/平面ADC1,练2:在三棱柱ABC-A1B1C1中,ABC为正三角形,D是BC上的点,若ADBC,求证:A1B/平面ADC1 .,E

11、,练习,21,例 如图,四棱锥P-ABCD中,底面ABCD是正方形,M,N分别是AB,PC的中点,求证:MN/平面PAD.,H,G,法二:取DC的中点G,连接GN,GM ,,往证面GMN/面PAD即可.,证明:取PD的中点H,连接HN,AH , 在三角形PDC中,HN为三角形中位线, 所以HN/DC且 HN= DC 又因为底面为正方形,且M为AB中点, 所以AM/DC且 AM= DC AM/HN且 AM=HN 即AMNH为平行四边形,故MN/AH 又AH 平面PAD ,MN 平面PAD, 故MN/平面PAD.,22,练:如图,四棱锥P-ABCD中,底面ABCD是正方形,PAD是正三角形,E,F

12、分别是PC,BD的中点,求证:EF/平面PAD.,证明:分别取PD,AD的中点G,H ,连接GE,HF ,GH 在PDC中,GE为三角形中位线, 所以GE/DC且 GE= DC 同理,HF/AB且 HF= AB 又底面为正方形,AM/DC且 AM=DC GE/HF且 GE=HF 即HFEG为平行四边形,故EF/GH 又GH 平面PAD ,EF 平面PAD, 故EF/平面PAD.,G,H,练习,23,例 如图,点B为ACD所在平面外一点,M,N分别为ABC,ABD的重心.(1)求证:MN/平面ACD.(2)若底面边长为1为正三角形,求线段的MN的长度.,解:(1)分别连接BM,BF交AC,AD于

13、点E,F.因为M,N分别为对应三角形的重心,故E,F为相应边的中点,且有 BM:ME=2:1,BN:NF=2:1 MN/EF且MN= EF. 又因为MN 平面ACD,EF 平面ACD所以 MN/ 平面ACD.,E,F,(2) 又因为在ACD中,EF是三角形的中位线, 所以,EF/CD且EF= CD. MN= ,CD=,线段成比例也是常用的找平行线的方法.,24,练 如图点B为ACD所在平面外一点,M,N,G分别为ABC,ABD, BCD的重心.(1)求证:平面MNG/平面ACD. (2)求 的值.,E,F,H,同理,连接BG交CD于中点H,可证NG/平面ACD且NG= FH.又因为MNNG=N

14、,所以面MNG/面ACD.,练习,解:(1)分别连接BM,BF交AC,AD于点E,F.因为M,N分别为对应三角形的重心,故E,F为相应边的中点,且有 BM:ME=2:1,BN:NF=2:1 MN/EF且MN= EF. 又因为MN 平面ACD,EF 平面ACD所以 MN/ 平面ACD.,25,同理可证明NG= AC且NG/AC, MG= AD且NG/AD,练 如图点B为ACD所在平面外一点,M,N,G分别为ABC,ABD, BCD的重心.(1)求证:平面MNG/平面ACD. (2)求 的值.,练习,解:(2)因为EF是ACD的中位线, 所以,EF/CD且EF= CD. 由(1)知MN= EF.

15、MN= CD且MN/CD,26,练1:如图在正方体ABCD-A1B1C1D1中,点E在AB1上,F在BD上,B1E=BF,求证:EF/ 平面BB1C1C.,解:(1)连接AF交BC于点,再连接B1K,,K,又因为EF 平面BB1C1C B1K 平面BB1C1C 所以EF/ 平面BB1C1C,练习,27,练2:P是长方形ABCD所在平面外的一点,AB、PD两点M、N满足AM:MB=ND:NP.求证:MN平面PBC.,练习,过M作ME/AD交BD于点E,连接EN,28,2. 线面平行判定定理应用时应注意: “面外,面内,平行”;面面平行判定定理判定应用时应注意:“两条,相交”;,小结:,1.直线与平面平行的判定以及平面和平面平行的判定:,3.应用判定定理判定线面平行的关键是找平行线,方法一:三角形的中位线定理;,方法二:平行四边形的平行关系.,方法三:线段成比例.,作业:P56 2+P58 1/2/3+P62 3/7/8,29,30,3.判断下列命题是否正确,并说明理由 (1)若平面 内的两条直线分别与平面 平行,则 与 平行; (2)若平面 内有无数条直线分别与平面 平行,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论