版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、几个初等函数的麦克劳林公式,第三节,一、泰勒公式的建立,三、泰勒公式的应用, 应用,用多项式近似表示函数,理论分析,近似计算,泰勒 ( Taylor )公式,特点:,一、泰勒公式的建立,以直代曲,在微分应用中已知近似公式 :,需要解决的问题,如何提高精度 ?,如何估计误差 ?,x 的一次多项式,2. 余项估计,令,(称为余项) ,则有,公式 称为 的 n 阶泰勒公式 .,公式 称为n 阶泰勒公式的拉格朗日余项 .,泰勒中值定理 :,阶的导数 ,时, 有,其中,则当,公式 称为n 阶泰勒公式的佩亚诺(Peano) 余项 .,在不需要余项的精确表达式时 , 泰勒公式可写为,注意到,特例:,(1
2、) 当 n = 0 时, 泰勒公式变为,(2) 当 n = 1 时, 泰勒公式变为,给出拉格朗日中值定理,可见,误差,称为麦克劳林( Maclaurin )公式 .,则有,在泰勒公式中若取,则有误差估计式,若在公式成立的区间上,由此得近似公式,二、几个初等函数的麦克劳林公式,其中,其中,类似可得,其中,其中,已知,其中,类似可得,已知,例2. 计算无理数 e 的近似值 , 使误差不超过,解:,令 x = 1 , 得,由于,欲使,由计算可知当 n = 9 时上式成立 ,因此,的麦克劳林公式为,2. 利用泰勒公式求极限,例3. 求,解:,由于,用洛必塔法则不方便 !,3. 利用泰勒公式证明不等式,例4. 证明,证:,内容小结,1. 泰勒公式,其中余项,当,时为麦克劳林公式 .,2. 常用函数的麦克劳林公式 ( P96),3. 泰勒公式的应用,(1) 近似计算,(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告设计合同样本模板
- 2024个人房屋出租合同精简版
- 手机销售合同范本2024年
- 2024家长委托代理人小学生接送合同
- 房产赠与合同范例
- 2024汽车零部件运输合同模板
- 2024年塘坝承包合同堰塘承包协议
- 2024广告活动赞助合同范本
- 葡萄酒代理授权合同样本-合同格式
- 2024上海国内旅游合同范本
- 小学数学跨学科融合的实践与思考
- 登高作业 施工方案
- 师范专业认证背景下师范生实践教学体系研究
- 浅谈管理者的自我管理
- 髂动脉溃疡的健康宣教
- 第一章 结构及其设计 课件-2023-2024学年高中通用技术苏教版(2019)必修《技术与设计2》
- Access数据库课程标准
- 幼儿园中班语言:《两只蚊子吹牛皮》 课件
- 临时用电漏电保护器运行检测记录表
- 头痛的国际分类(第三版)中文
- 音乐ppt课件《小小的船》
评论
0/150
提交评论