版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、直接(或转化)由等差、等比数列的求和公式求和例1(07高考山东文18)设是公比大于1的等比数列,为数列的前项和已知,且构成等差数列(1)求数列的等差数列(2)令求数列的前项和练习:设sn1+2+3+n,nn*,求的最大值. 二、错位相减法例2(07高考天津理21)在数列中,其中()求数列的通项公式;()求数列的前项和;例3(07高考全国文21)设是等差数列,是各项都为正数的等比数列,且,()求,的通项公式;()求数列的前n项和三、逆序相加法例4(07豫南五市二联理22.)设函数的图象上有两点p1(x1, y1)、p2(x2, y2),若,且点p的横坐标为.(i)求证:p点的纵坐标为定值,并
2、求出这个定值;(ii)若四、裂项求和法例5 求数列的前n项和.例6(06高考湖北卷理17)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。()求数列的通项公式;()设,是数列的前n项和,求使得对所有都成立的最小正整数m;五、分组求和法例7数列an的前n项和,数列bn满 .()证明数列an为等比数列;()求数列bn的前n项和tn。例8求()六、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.例9 求之和.解:由于 (找通项及特征) (分组求和)例10 已知数列an:的值
3、.解: (找通项及特征) (设制分组) (裂项) (分组、裂项求和) 类型1 解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例:已知数列满足,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,类型2 解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例:已知数列满足,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,例:已知, ,求。 。类型3 (其中p,q均为常数,)。解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。例:已知数列中,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所
4、以.变式:递推式:。解法:只需构造数列,消去带来的差异类型4 (其中p,q均为常数,)。 (,其中p,q, r均为常数) 。解法:一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再待定系数法解决。例:已知数列中,,,求。解:在两边乘以得:令,则,解之得:所以类型5递推公式为与的关系式。(或)解法:这种类型一般利用与消去 或与消去进行求解。例:已知数列前n项和.(1)求与的关系;(2)求通项公式.解:(1)由得:于是所以.(2)应用类型4(其中p,q均为常数,)的方法,上式两边同乘以得:由.于是数列是以2为首项,2为公差的等差数列,所以类型6解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。例:设数列:,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国高速数据采集和监控系统数据监测研究报告
- 2025至2030年中国转页式风扇数据监测研究报告
- 环保设施用地中介合作协议
- 商业赞助对学校体育活动资金的支持方式
- 房地产行业合同文书写作培训
- 大型活动场所的文明施工与环保措施
- 学校心理辅导活动的创意与实践案例分享
- 数学教学中培养学生逻辑思维能力的途径
- 2024年度江西省公共营养师之三级营养师通关提分题库(考点梳理)
- 2024年度江西省公共营养师之二级营养师自我提分评估(附答案)
- 2024人教新版七年级上册英语单词英译汉默写表
- 《向心力》参考课件4
- 2024至2030年中国膨润土行业投资战略分析及发展前景研究报告
- 【地理】地图的选择和应用(分层练) 2024-2025学年七年级地理上册同步备课系列(人教版)
- 2024年深圳中考数学真题及答案
- 土方转运合同协议书
- Module 3 Unit 1 Point to the door(教学设计)-2024-2025学年外研版(三起)英语三年级上册
- 智能交通信号灯安装合同样本
- 安全生产法律法规清单(2024年5月版)
- 江苏省连云港市2023-2024学年八年级下学期期末道德与法治试卷(含答案解析)
- 2024年大学试题(宗教学)-佛教文化笔试考试历年高频考点试题摘选含答案
评论
0/150
提交评论