版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第13章 边界层理论基础,主要内容: 13.0 N-S方程的简化 13.1边界层的概念 13.2 层流边界层的微分方程 13.7 边界层的分离现象及绕流阻力,13.0 N-S方程的简化,Re(惯性力与粘性力之比)很小时 小球绕流问题 小球在静止液体中作自由下落,受力分析如图。由于 fv, 则当F+f=G 时,小球作匀速下降,且速度最大,称自由沉降速度 可以略去惯性力,只考虑粘性力;,13.0 N-S方程的简化,Re (惯性力与粘性力之比)很大时 圆柱绕流问题 若略去粘性力,只考虑惯性力 实际流体理想流体。,当理想流体的平行流无环流地绕流圆柱体时,圆柱体既不受阻力作用,也不产生升力。,达朗伯疑题
2、,圆柱绕流问题,一、边界层的概念,边界层理论: 1904 普朗特 粘滞性固定边壁:u=0 实际液体 u,边界附近区域的横向流速梯度很大,(1)物体边界附近薄层由于粘性力作用,有很大的速度梯度du/dy边界层(附面层);,(2)边界层以外的流动,粘性力作用不计理想流体无旋流动(势流),13.1边界层的概念,二、边界层厚度,边界层的界限:流速u=0.99U0的地方,边界层的厚度:从平板沿外法线到流速u=0.99U0处的距离。,用符号表示边界层厚度。,边界层的厚度是沿板端的距离x的增加而增大,因此一般表示为x的函数,即,三、边界层内液体的流态,1、实际液体运动的两种流动型态,判别指标:Rex,2、边
3、界层内的水流型态,层流边界层:,紊流边界层:,层流:,紊流:,板面粘性底层0 (= ),Re=5105106,极薄,横向流速梯度很大,很大的内摩擦阻力(粘滞力),层流边界层,紊流边界层:,13.2 层流边界层的微分方程,现在根据边界层的特征,利用不可压缩粘性流体的运动微分方程来研究边界层内流体的运动规律。为简单起见,只讨论流体沿平板作定常的平面流动,x轴与壁面相重合,如图13-3所示。假定边界层内的流动全是层流,忽略质量力,则不可压缩粘性流体平面定常流动的微分方程和连续方程为 (13-1),图13-3 推导层流边界层的微分方程用图,可以利用边界层每一处的厚度都很小的特征,来比较方程组(13-1
4、)中各项的数量级,权衡主次,忽略次要项,这样便可大大简化该方程组。 边界层的厚度 与平板的长度 相比较是很小的,即 ,而y的数值限制在边界层内,并满足不等式 为了把方程组(13-1)变换成无量纲的,引入坐标x、y与平板长度 、分速度vx、vy与来流速度 ,压强p与 之比,即引入无量纲物理量:,将它们代入方程组(13-1),整理后得,(13-2),式中 。很显然,在边界层内, 以及y与 是同一数量级,于是可取 (符号表示数量级相同),所以得到如下一些数量级:,然后,再来求出其它各量的数量级,由连续方程,因此 ,于是又得到以下数量级:,为了便于讨论,将各项的数量级记载方程组(13-2)相应项的下面
5、。现在来分析方程组(13-2)各项的数量级,以达到简化方程的目的。,惯性项 和 具有相同的数量级1,而惯性项 和 也具有另一个相同的数量级 ,比较这两个惯性项的数量级,方程组(13-2)中第二式中各惯性项可以忽略掉。另外,比较各粘性项的数量级,可知 与 比较, 可以略去;又 与 比较, 可以略去; 最后,比较 和 的数量级, 也可以略去。 于是在方程组(13-2)的粘性项中只剩第一式中的一项,根据边界层的特征,在边界层内惯性项和粘性项具有同样的数量级,由方程组(13-2)可知,必须使 和 同数量级,所以 ,即 反比于 。这表明,雷诺数越大,边界层相对厚度越小。,这样,将式(13-2)中的某些项
6、略去,再变换成有量纲量,便得到了层流边界层的微分方程(称为普朗特边界层方程):,(13-3),其边界条件为,(13-4),式中 是边界层外边界上势流的速度分布,可由势流理论来决定。对于沿平板流动, 从方程组(13-3)第二式得到一个很重要的结论:在边界层内压强p与y无关,即边界层横截面上各点的压强相等,,。而在边界层外边界上,边界层内的流动与外部有势流动相合。所以压强 可以根据势流的速度 由伯努力方程来决定,即,因为 ,即 ,这就是说,压强项 和惯性项 具有同一个数量级。 对于在壁面上的各点, 由式(13-3)的第一式可得,(13-5),方程组(13-3)是在物体壁面为平面的假设下得到的,但是
7、,对于曲面物体,只要壁面上任何点的曲率半径与该处边界层厚度相比很大时(机翼翼型和叶片叶型即如此),该方程组仍然是适用的,并具有足够的精确度。这时,应用曲线坐标,x轴沿着物体的曲面,y轴垂直于曲面。 虽然层流边界层的微分方程(13-3)比一般的粘性流体运动微分方程要简单些,但是,即使对最简单的物体外形,这方程的求解仍是很复杂的。由于这个缘故,解决边界层问题的近似法便具有很大的实际意义。边界层的动量积分关系式为近似揭发提供了基础。,(1)正对圆心的流线(0流线):,u愈接圆柱体u愈小,p愈接圆柱体p愈大,N点:uN=0, pN=pmax,(2)N点A(B)点,流线变密,,A(B)点:uA(B)=u
8、max, pN=pmin 由此可知:这一段边界层内的液流是处于加速减压状态的。即,在该段边界层内用压强下降来补偿能量损失外,尚有一部分压能变为动能,到A或B点压强减至最小,流速增至最大。,13.7 边界层的分离现象及绕流阻力一、边界层的分离现象,u,(3)A(B)点以后,流线扩散,C点:u=0,一、边界层的分离现象,u,在A点或B点以下边界层内液流是处于减速增压状态。越向下游前进动能越小、结果到了C点由于动能减小至零而停止前进,在C点以下,若压强继续增加,就无动能可以变为压能,因此主流只有离开曲面,以减缓水流扩散,下游液体随即填补主流所空出的区域,形成旋涡这种现象叫做边界层的分离。,流线型,C点的位置与物体形状、表面粗糙度及液流状态均有密切关系,至今尚无一般方法可以确定。当固体表面有凸出的锐角时,其分离点往往就在锐角的尖端,边界层分离后,旋涡在产生与衰减的过程中损失的能量转化为热能,这种能量损失称为旋涡损失。与此相应的阻力称为旋涡阻力。 分离点愈接近于物体的尾部,旋涡区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年文化创意产业项目委托合同
- 2024年企业社会责任广告项目合同
- 2024年建筑施工长期劳务协议
- 保安人员年度工作计划范文(7篇)
- 2024年建设工程资金融通协议样本
- 关于2024年房地产销售目标计划怎么写模板范文15篇
- DB4101T 73-2023 少林武术基本动作要求
- 2024年技术服务协议(含升级)
- 押题07自然灾害类-备战2023年高考地理之考前押大题(原卷版)
- 2024年纸品用胶项目评价分析报告
- 初中语文教学中生本理念的实践分析
- 最新患者用药情况监测
- 试桩施工方案 (完整版)
- ESTIC-AU40使用说明书(中文100版)(共138页)
- 河北省2012土建定额说明及计算规则(含定额总说明)解读
- 中工商计算公式汇总.doc
- 深圳市建筑装饰工程消耗量标准(第三版)2003
- 《初中英语课堂教学学困生转化个案研究》开题报告
- 钢筋桁架楼承板施工方案
- 恒温箱PLC控制系统毕业设计
- 176033山西《装饰工程预算定额》定额说明及计算规则
评论
0/150
提交评论