




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,二次函数图象和性质,知识回顾,1、二次函数的一般形式是怎样的?,y=ax+bx+c(a,b,c是常数,a 0),探究新知,你会用描点法画二次函数y=x2的图象吗?,观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:,9,4,1,1,0,4,9,描点,连线,y=x2,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线,这条抛物线关于 y轴对称,y轴就 是它的对称轴.,对称轴与抛物 线的交点叫做 抛物线的顶点.,议一议,(2)图象 与x轴有交点吗?如果有,交点坐标是什么?,(4)当x0呢?,(3)当x取什么值时,y的值最小?最小值是什么? 你是如何知道的?,观察图
2、象,回答问题:,(1)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点?,当x0 (在对称轴的 左侧)时,y随着x的增大而 减小.,当x0 (在对称轴的 右侧)时, y随着x的增大而 增大.,抛物线y=x2在x轴的 上方(除顶点外),顶点 是它的最低点,开口 向上,并且向上无限 伸展;当x=0时,函数y 的值最小,最小值是0.,(1)二次函数y=-x2的图象是什么形状?,做一做,你能根据表格中的数据作出猜想吗?,(2)先想一想,然后作出它的图象,(3)它与二次函数y=x2的图象有什么关系?,在学中做在做中学,x,y,0,-4,-3,-2,-1,1,2,3,4,-10,-8,-6
3、,-4,-2,2,-1,描点,连线,y=-x2,当x0 (在对称轴的 左侧)时,y随着x的增大而 增大.,当x0 (在对称轴 的右侧)时, y随着 x的增大而减小.,y,抛物线y= -x2在x轴的 下方(除顶点外),顶点 是它的最高点,开口 向下,并且向下无限 伸展;当x=0时,函数y 的值最大,最大值是0.,画一画,在同一坐标系中画出函数y=3x2和y=-3x2的图象,1.抛物线y=ax2的顶点是原点,对称轴是y轴.,2.当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展; 当a0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.,
4、3.当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小. 当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.,二次函数y=ax2的性质,归纳,做一做,(1)抛物线y=2x2的顶点坐标是 ,对称轴是 , 在对称轴 侧,y随着x的增大而增大;在对称轴 侧, y随着x的增大而减小,当x= 时,函数y的值最小,最小 值是 ,抛物线y=2x2在x轴的 方(除顶点外).,(2)抛物线 在x轴的 方(除顶点外),在对称轴的左侧,y随着x的 ;在对称轴的右侧,y随着x的 ,当x=0时,函数y
5、的值最大,最大值是 , 当x 0时,y0.,解:(1) 列表,(2) 描点,(3) 连线,y=x2,画最简单的二次函数 y = x2 的图象,列表时应注意 什么问题?,描点法,列表,描点,连线,描点时应以哪些数值作为点的坐标?,连线时应注意什么问题?,二次函数 y = x2的图象是一条曲线,它的形状类似于投篮球时球在空中所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线 y = x2 ,,二次函数y = x 2 的图象是轴对称图形,,一般地,二次函数 y = ax2 + bx + c(a0) 的图象叫做抛物线y = ax2 + bx + c,抛物线 与它的对称轴的交点 (0,0)叫做抛物线
6、 的顶点,它是抛物线 的最低点,实际上, 二次函数的图象都是抛物线,,对称轴是y轴,这条抛物线是轴对称 图形吗?如果是, 对称轴是什么?,抛物线与对称轴 有交点吗?,例题与练习,例1.在同一直角坐标系中画出函数y= x2和y=2x2的图象,解: (1) 列表,(2) 描点,(3) 连线,8,2,0.5,0,0.5,2,4.5,8,4.5,8,-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,4.5,2,0.5,0,0.5,2,4.5,8,函数y= x2,y=2x2的图象与函数y=x2(图中虚线图形)的图象相比,有什么共同点和不同点?,观察,共同点:,不同点:,开口都向上;,顶点是原点
7、而且是抛物线 的最低点,对称轴是 y 轴,开口大小不同;,|a|越大,,在对称轴的左侧, y随着x的增大而减小。,在对称轴的右侧,y随着x的增大而增大。,抛物线的开口越小。,解: (1) 列表,(2) 描点,(3) 连线,-,-2.25,-,-0.25,-0.25,-,-2.25,-,-2,-2,-,-,-,-,-.,-.,-.,-.,-.,-.,-.,-.,-4. 5,-4. 5,-1,-2,-3,0,1,2,3,-1,-2,-3,-4,-5,-1,-2,-3,0,1,2,3,-1,-2,-3,-4,-5,观察,函数y= x2,y=2x2的图象与函数y=x2 (图中蓝线图形)的图象相比,有什
8、么共同点和不同点?,共同点:,开口都向下;,不同点:,顶点是原点而且是抛物线 的最高点,对称轴是 y 轴,开口大小不同;,|a| 越大,,在对称轴的左侧, y随着x的增大而增大。,在对称轴的右侧, y随着x的增大而减小。,抛物线的开口越小,对比抛物线,y=x2和y=x2.它们关于x轴对称吗?一般地,抛物线y=ax2和y=ax2呢?,在同一坐标系内,抛物线 与 抛物线 是关于x轴对称的.,1、根据左边已画好的函数图象填空: (1)抛物线y=2x2的顶点坐标是 , 对称轴是 ,在 侧, y随着x的增大而增大;在 侧, y随着x的增大而减小,当x= 时, 函数y的值最小,最小值是 ,抛物 线y=2x
9、2在x轴的 方(除顶点外)。,(2)抛物线 在x轴的 方(除顶点外),在对称轴的 左侧,y随着x的 ;在对称轴的右侧,y随着x的 ,当x=0时,函数y的值最大,最大值是 , 当x 0时,y0.,(0,0),y轴,对称轴的右,对称轴的左,0,0,上,下,增大而增大,增大而减小,0,课堂练习,向上,向下,(0 ,0),(0 ,0),y轴,y轴,当x0时, y随着x的增大而减小。,当x0时, y随着x的增大而增大。,x=0时,y最小=0,x=0时,y最大=0,抛物线y=ax2 (a0)的形状是由|a|来确定的,一般说来, |a|越大,归纳小结,当x0时, y随着x的增大而增大。,当x0时, y随着x
10、的增大而减小。,抛物线的开口就越小.,|a|越小,抛物线的开口就越大.,1、二次函数y=ax2的图象是什么?,2、二次函数y=ax2的图象有何性质?,3、抛物线y=ax2 与y=-ax2有何关系?,小结,归纳,二次函数 的图象及性质:,1.图象是一条抛物线,对称轴是y轴, 顶点是原点。,归纳,二次函数 的图象及性质:,2.当a0时,开口向上,顶点是最低点, a值越大,抛物线开口越小; 在对称轴的左侧,y随x的增大而减小, 在对称轴的右侧,y随x的增大而增大。,归纳,二次函数 的图象及性质:,3.当a0时,开口向下,顶点是最高点, a值越大,抛物线开口越大; 在对称轴的左侧,y随x的增大而增大; 在对称轴的右侧,y随x的增大而减小。,巩固,1、说出下列函数图象的性质:,2、已知二次函数 的图形经 过点(-2,-3)。 (1)求a的值,并写出函数解析式; (2)说出函数图象的顶点坐标、对称轴、 开口方向和图象的位置;,巩固,巩固,3、若抛物线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装修工程协议书(30篇)
- 保本型理财合同样本
- 2025健身加盟合同书模板
- 二零二五版学生入学协议书
- 二零二五版全新高管的劳动合同
- 二零二五股东出资协议范例
- 浅析我国电子合同的法律问题
- 二零二五版摄影师聘用合同
- 二手房交易中介担保书二零二五年
- 互联网改造合同标准文本
- 中资美元债专题系列一:中资美元债知多少
- 采用TBM机掘进煤矿斜井的施工
- 幼儿英语活动指导++课件
- 区慢性病综合防控示范区绩效考核评操作表
- 【课件】时代与变革-为人生而艺术 课件高中美术人美版(2019)美术鉴赏
- 建设工程施工合同(示范文本)GF-2020-0201模板
- 牛顿拉夫逊迭代法极坐标潮流计算C语言程序
- 食品接触材料控制程序
- 人教版高一数学必修一全套教案
- ups并机工作原理及扩容方案
- 北师大版七年级下册实验通知单
评论
0/150
提交评论