二次根式的混合运算_第1页
二次根式的混合运算_第2页
二次根式的混合运算_第3页
二次根式的混合运算_第4页
二次根式的混合运算_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,16.3 二根次式的加减,第十六章 二次根式,导入新课,讲授新课,当堂练习,课堂小结,八年级数学下(RJ) 教学课件,第1课时 二次根式的混合运算,1. 掌握二次根式的混合运算的运算法则.(重点) 2.会运用二次根式的混合运算法则进行有关的运算.(难点),导入新课,问题1 单项式与多项式、多项式与多项式的乘法法则法则分别是什么?,问题2 多项式与单项式的除法法则是什么?,m(a+b+c)=ma+mb+mc;,(m+n)(a+b)=ma+mb+na+nb,复习引入,(ma+mb+mc)m=a+b+c,分配律,单多,转化,前面两个问题的思路是:,思考 若把字母a,b,c,m都用二次根式代替(每个

2、同学任选一组),然后对比归纳,你们发现了什么?,单单,讲授新课,二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用.,例1 计算:,解:,二次根式的混合运算,先要弄清运算种类,再确定运算顺序:先乘除,再加减,有括号的要算括号内的,最后按照二次根式的相应的运算法则进行.,解:,此处类比“多项式多项式”即(x+a)(x+b)=x2+(a+b)x+ab.,解:(1)原式,(2)原式,【变式题】计算:,有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.,例2 甲、乙两个城市间计划修建一条城际铁路, 其中有一段路基的横断面设计为上底宽

3、,下底宽 ,高 的梯形,这段路基长 500 m,那么这段路基的土石方 (即路基的体积,其中路基的体积=路基横断面面积路基的长度)为多少立方米呢?,典例精析,解:路基的土石方等于路基横断面面积乘以路基的长度,所以这段路基的土石方为:,答:这段路基的土石方为,计算:,练一练,问题1 整式乘法运算中的乘法公式有哪些?,平方差公式:(a+b)(a-b)=a2-b2;,完全平方公式:(a+b)2=a2+2ab+b2;,(a-b)2=a2-2ab+b2.,问题2 整式的乘法公式对于二次根式的运算也适用吗?,整式的乘法公式就是多项式多项式,前面我们已经知道二次根式运算类比整式运算,所以适用哟,例3 计算:,

4、解:,典例精析,解:,进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式,因式分解等来简化运算.,【变式题】计算:,解:(1)原式,(2)原式,计算:,练一练,先用乘法交换律,再用乘法公式化简.,例3 已知 试求x2+2xy+y2的值.,解: x2+2xy+y2=(x+y)2,把 代入上式得,原式=,解: , x3y+xy3=xy(x2+y2)=xy(x+y)2-2xy,【变式题】 已知 ,求x3y+xy3.,用整体代入法求代数式值的方法:求关于x,y的对称式(即交换任意两个字母的位置后,代数式不变)的值,一般先求x+y,x

5、y,x-y, 等的值,然后将所求代数式适当变形成知含x+y,xy,x-y, 等式子,再代入求值.,在前面我们学习了二次根式的除法法则时,学会了怎样去掉分母的二次根式的方法,比如:,拓展探究,思考 如果分母不是单个的二次根式,而是含二次根式的式子,如: 等,该怎样去掉分母中的二次根式呢?,根据整式的乘法公式在二次根式中也适用,你能想到什么好方法吗?,例4 计算:,解:,分母形如 的式子,分子、分母同乘以 的式子,构成平方差公式,可以使分母不含根号.,【变式题】 已知 ,求 .,解:,解决二次根式的化简求值问题时,先化简已知条件,再用乘法公式变形、代入求值即可.,已知 的整数部分是a,小数部分是b

6、,求a2-b2的值.,解:,练一练,当堂练习,1.下列计算中正确的是( ),B,2.计算:,5,3.设 则a b(填“”“ ”或 “= ”).,=,4.计算:,解:,解:原式,5.在一个边长为 cm的正方形内部,挖去一个边长为 cm的正方形,求剩余部分的面积.,解:由题意得,即剩余部分的面积是,6.(1) 已知 ,求 的值;,解:x2-2x-3=(x-3)(x+1),(2)已知 ,求 的值.,解:,6.阅读下列材料,然后回答问题: 在进行类似于二次根式 的运算时,通常有如下两种方法将其进一步化简:,方法一:,方法二:,能力提升:,(1)请用两种不同的方法化简: (2)化简:,解:(1),课堂小结,二次根式混合运算,乘法公式,化简求值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论