下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、条件概率学习目标 通过实例,了解条件概率的概念,能利用条件概率的公式解决简单的问题 1教学重点:条件概率的定义及计算 2教学难点:条件概率定义的理解方 法:自主学习 合作探究 师生互动一预习导学思考:在10件产品中有9件产品的长度合格,8件产品的质量合格,7件产品的长度、质量都合格令A任取一件产品其长度合格,B任取一件产品其质量合格,AB任取一件产品其长度、质量都合格,C任取一件产品,在其长度合格的条件下,其质量也合格,试讨论概率P(A),P(B),P(AB),P(C)的值,你发现了什么?新知:1条件概率一般地,设A、B为两个事件,且P(A)0,称P(B|A)_为在事件A发生的条件下事件B发生
2、的条件概率一般把P(B|A)读作_如果事件A发生与否,会影响到事件B的发生,显然知道了A的发生,研究事件B时,基本事件发生变化,从而B发生的概率也相应的发生变化,这就是_要研究的问题 2条件概率的性质性质1:0P(B|A)1;性质2:如果B和C是两个互斥事件,那么P(BC|A)P(B|A)P(C|A)二 典例分析例1、在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:(l)第1次抽到理科题的概率; (2)第1次和第2次都抽到理科题的概率; (3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率跟踪训练1:某种动物活到20岁的概率为0.8,活到25岁的概率为0.4,如果
3、现在有一个20岁的这种动物,问它能活到25岁的概率是多少?2、一盒子装5只产品,其中3只一等品,2只二等品。从中取产品两次,每次取一只,作不放回抽样,设事件A=第一次取到一等品,事件B=第二次取到一等品,试求条件概率P(B|A)。3、4张奖券中只有1张能中奖,现分别由4名同学无放回的抽取,若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是()A. B. C. D1例2:抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”(1)求P(A)、P(B)、P(AB);(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率跟踪训练1
4、:抛掷一颗骰子,观察出现的点数,若已知出现的点数不超过3,则出现的点数是奇数的概率为_2、抛掷两枚均匀的骰子,问(1)在已知他们点数不同的条件下,至少有一枚是6点的概率是多少?(2)至少有一枚是6点的概率是多少?例3、一张储蓄卡的密码共有6位数,每位数字都可从09中任选,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)按第一次不对的情况下,第二次按对的概率;(2)任意按最后一位数字,按两次恰好按对的概率;(3)任意按最后一位数字,不超过 2 次就按对的概率;(4)若他记得密码的最后一位是偶数,不超过2次就按对的概率跟踪训练、在某次考试中,从20道题中随机抽取6道,若考生至少能
5、答对其中的4道即可通过;若至少能答对其中的5道就能获得优秀。已知某考生能答对其中的10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率。(只列式不求值)例4:一个口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?跟踪训练1 抛掷两枚骰子,已知两枚骰子向上的点数之和为7,求其中一枚骰子向上的点数为1的概率.2、盒子里有7个白球,3个红球,白球中有4个木球,3个塑料球;红球中有2个木球,1个塑料球.现从袋子中摸出1个球,假设每个球被摸到的可能性相等,若已知摸到的是一个木球,问它是白球的概率是
6、多少?课下作业一、选择题1(2020潍坊市高二期末)用“0”、“1”、“2”组成的三位数码组中,若用A表示“第二位数字为0”的事件,用B表示“第一位数字为0”的事件,则P(A|B)()A B C D2在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为()A B C D3(2020泰安市高二检测)从1,2,3,4,5中任取2个不同的数,事件A“取到的2个数之和为偶数”,事件B“取到的2个数均为偶数”,则P(B|A)()A B C D4一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是()A B C D5根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现合集【人力资源管理篇】
- 2024年厂年度劳动竞赛的工作总结
- 《广告的社会功能》课件
- 第1单元 中华人民共和国的成立与巩固 (B卷·能力提升练)(解析版)
- 《孟子生平简介》课件
- 《杜绝校园欺凌》课件
- 超市客服话务员工作总结
- 探索生态之谜
- 2023年项目安全培训考试题(能力提升)
- 2023年项目部治理人员安全培训考试题附完整答案(必刷)
- 道路运输企业安全生产管理人员安全考核试题题库与答案
- 年终抖音运营述职报告
- 车间修缮合同模板
- 脑梗死患者的护理常规
- 2024年7月国家开放大学法律事务专科《法律咨询与调解》期末纸质考试试题及答案
- 儿童文学解读导论智慧树知到期末考试答案章节答案2024年嘉兴大学
- 2023版押品考试题库必考点含答案
- 社会组织绩效考核管理办法
- 密封固化剂配方分析
- 国际项目管理专业资质认证(ipmp)b级报告模板
- 计数培养基适用性检查记录表
评论
0/150
提交评论