




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,2.2 用配方法求解一元二次方程,第二章 一元二次方程,优 翼 课 件,导入新课,讲授新课,当堂练习,课堂小结,第2课时 用配方法求解较复杂的一元二次方程,学练优九年级数学上(BS) 教学课件,1.会用配方法解二次项系数不为1的一元二次方程;.(重点) 2.能够熟练地、灵活地应用配方法解一元二次方程.(难点),学习目标,问题:用配方法解一元二次方程(二次项系数为1)的步骤是什么?,步骤:(1)将常数项移到方程的右边,使方程的左边只含二 次项和一次项; (2)两边都加上一次项系数一半的平方. (3)直接用开平方法求出它的解.,导入新课,问题1:观察下面两个是一元二次方程的联系和区别: x2 +
2、 6x + 8 = 0 ; 3x2 +18x +24 = 0.,问题2:用配方法来解 x2 + 6x + 8 = 0 .,解:移项,得 x2 + 6x = -8 , 配方,得 (x + 3)2 = 1. 开平方, 得 x + 3 = 1. 解得 x1 = -2 , x2= -4.,想一想怎么来解3x2 +18x +24 = 0.,讲授新课,例1:用配方法解方程: 3x2 +18x +24 = 0.,解:方程两边同时除以3,得 x2 + 6x + 8 = 0 . 移项,得 x2 + 6x = -8 , 配方, 得 (x + 3)2 = 1. 开平方, 得 x + 3 = 1. 解得 x1 = -
3、2 , x2= -4 .,在使用配方法过程中若二次项的系数不为1时,需要将二次项系数化为1后,再根据配方法步骤进行求解.,例2:解方程: 3x2 + 8x -3 = 0. 解:两边同除以3,得 x2 + x - 1=0. 配方,得 x2 + x + ( ) 2 - ( )2 - 1 = 0, (x + )2 - =0. 移项,得 x + = , 即 x + = 或 x + = . 所以 x1= , x2 = -3 .,例3:一个小球从地面上以15m/s的初速度竖直向上弹出,它在空中的高度h (m)与时间 t (s)满足关系: h=15t - 5t2. 小球何时能达到10m高?,解:将 h =
4、10代入方程式中. 15t - 5t2 = 10. 两边同时除以-5,得 t2 - 3t = -2, 配方,得 t2 - 3t + ( )2= ( )2 - 2, (t - )2 =,移项,得 (t - )2 = 即 t - = ,或 t - = . 所以 t1= 2 , t2 = 1 .,二次项系数要化为1;在二次项系数化为1时,常数项也要除以二次项系数;配方时,两边同时加上一次项系数一半的平方.,即在1s或2s时,小球可达10m高.,1. 方程2x2 - 3m - x +m2 +2=0有一根为x = 0,则m的值为( ) A. 1 B.1 C.1或2 D.1或-2 2.应用配方法求最值.
5、(1) 2x2 - 4x+5的最小值; (2) -3x2 + 5x +1的最大值.,拓展提升,C,解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3 当x =1时有最小值3 (2) -3x2 + 12x - 16 = -3(x - 2)2 - 4 当x =2时有最大值-4,1.用配方法解方程: x2 + x = 0.,解:方程两边同时除以 ,得 x2 - 5x + = 0 . 移项,得 x2 - 5x = - , 配方, 得 x2 - 5x + ( )2= ( )2 - . 即 (x + )2 =.,当堂练习,两边开平方,得 x - = 即 x - = 或 x - = 所以 x1 = x2 =,2.用配方法解方程:3x2 - 4x + 1 = 0.,解:方程两边同时除以 3 ,得 x2 - x + = 0 . 移项,得 x2 - x = - , 配方, 得 x2 - x + ( )2= ( )2 - .,即 (x - )2 = 两边开平方,得 x - = 即 x - = 或 x - = 所以 x1 = 1 x2 =,用配方法解系数不为1的一元二次方程的步骤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育培训公司简介
- 试卷模块(五年级数学口算题)
- 物业岗位规范培训
- 电动自行车消防安全警示与防护指南安全培训课件
- 听宫病变早期诊断-全面剖析
- 数字技术在街区应用-全面剖析
- 免疫细胞治疗疗效评价-全面剖析
- 供应链绿色转型策略分析-全面剖析
- 电动葫芦安全操作规程培训
- 电磁波对人体生物效应研究-全面剖析
- 放射工作人员法律法规及防护知识培训考核试题附答案
- 陕旅版四年级英语下册Unit-5-Where-Are-You-Going第2课时课件
- DB32-T 4264-2022 金属冶炼企业中频炉使用安全技术规范
- 三 年级下册音乐课件-剪羊毛|人音版(五线谱)
- 富余水深与船体下沉量的关系
- 三年级下册数学课件-4.1 整体与部分 ▏沪教版 (15张PPT)
- 爱国主义教育主题班会课件(25张PPT)
- 电气防爆施工节点做法
- 远洋航线设计、航法及气象导航
- 团结就是力量曲谱和歌词
- 2022年交通管制员年终考核个人工作总结
评论
0/150
提交评论