垂径定理.ppt_第1页
垂径定理.ppt_第2页
垂径定理.ppt_第3页
垂径定理.ppt_第4页
垂径定理.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、它是1300多年前我国隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m, 你能求出赵州桥主桥拱的半径吗?,你知道赵州桥吗?,垂直于弦的直径,把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?,可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴,它有无数条对称轴,活动一,看一看,AEBE,AEBE,AM=BM,AB是O的一条弦.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,作直径CD,使CDAB,垂足为M.,右图是轴对称图形吗?如果是,其对称轴是什

2、么?,小明发现图中有:,由 CD是直径, CDAB,垂径定理,如图,小明的理由是:,连接OA,OB,则OA=OB.,在RtOAM和RtOBM中,OA=OB,OM=OM,,RtOAMRtOBM.,AM=BM.,点A和点B关于CD对称.,O关于直径CD对称,当圆沿着直径CD对折时,点A与点B重合,垂径定理三种语言,定理 垂直于弦的直径平分弦,并且平分 111弦所对的两条弧.,CDAB,如图 CD是直径,AM=BM,CDAB,AB是O的一条弦,且AM=BM.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,过点M作直径CD.,右图是轴对称图形吗?如果是,其对称轴是什么?,小明发现图中有:,由

3、 CD是直径, AM=BM,如图,小明的理由是:,连接OA,OB,垂径定理的逆定理,则OA=OB.,在OAM和OBM中,OA=OB,OM=OM,AM=BM,OAMOBM.,AMO= BMO.,CDAB,O关于直径CD对称,当圆沿着直径CD对折时,点A与点B重合,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.,例1 :如图,已知在O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求O的半径。,解:连结OA。过O作OEAB,垂足为E, 则OE3厘米,AEBE。 AB8厘米 AE4厘米 在RtAOE中,根据勾股定理有OA5厘米 O的半径为5厘米。,例2:已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。 求证:ACBD。,证明:过O作OEAB,垂足为E, 则AEBE,CEDE。 AECEBEDE。 所以,ACBD,E,判断下列说法的正误,平分弧的直径必平分弧所对的弦,平分弦的直线必垂直弦,垂直于弦的直径平分这条弦,平分弦的直径垂直于这条弦,弦的垂直平分线是圆的直径,平分弦所对的一条弧的直径必垂直这条弦,在圆中,如果一条直线经过圆心且平分弦, 必平分此弦所对的弧,分别过弦的三等分点作弦的垂线,将弦所对 的两条弧分别三等分,1.1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为 37.4 m,拱高(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论