第四章 三极管及放大电路.ppt_第1页
第四章 三极管及放大电路.ppt_第2页
第四章 三极管及放大电路.ppt_第3页
第四章 三极管及放大电路.ppt_第4页
第四章 三极管及放大电路.ppt_第5页
已阅读5页,还剩142页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,4.1 半导体三极管,4.1.1 BJT的结构简介,4.1.2 放大状态下BJT的工作原理,4.1.3 BJT的VI特性曲线,4.1.4 BJT的主要参数,4.1.1 BJT的结构简介,(a) 小功率管 (b) 小功率管 (c) 大功率管 (d) 中功率管,半导体三极管的结构示意图如图所示。它有两种类型:NPN型和PNP型。,4.1.1 BJT的结构简介,(a) NPN型管结构示意图 (b) PNP型管结构示意图 (c) NPN管的电路符号 (d) PNP管的电路符号,集成电路中典型NPN型BJT的截面图,4.1.1 BJT的结构简介,三极管的放大作用是在一定的外部条件控制下,通过载流子传输

2、体现出来的。 外部条件:发射结正偏 集电结反偏,4.1.2 放大状态下BJT的工作原理,1. 内部载流子的传输过程,发射区:发射载流子 集电区:收集载流子 基区:传送和控制载流子 (以NPN为例),由于三极管内有两种载流子(自由电子和空穴)参与导电,故称为双极型三极管或BJT (Bipolar Junction Transistor)。,IC= InC+ ICBO,IE=IB+ IC,放大状态下BJT中载流子的传输过程,2. 电流分配关系,根据传输过程可知:,IC= InC+ ICBO,通常 IC ICBO,IE=IB+ IC,放大状态下BJT中载流子的传输过程,且令,2. 电流分配关系,3.

3、 三极管的三种组态,共集电极接法,集电极作为公共电极,用CC表示。,共基极接法,基极作为公共电极,用CB表示;,共发射极接法,发射极作为公共电极,用CE表示;,BJT的三种组态,共基极放大电路,4. 放大作用,电压放大倍数,vO = -iC RL = 0.98 V,,综上所述,三极管的放大作用,主要是依靠它的发射极电流能够通过基区传输,然后到达集电极而实现的。 实现这一传输过程的两个条件是: (1)内部条件:发射区杂质浓度远大于基区杂质浓度,且基区很薄。 (2)外部条件:发射结正向偏置,集电结反向偏置。,重庆工学院,4.1.3 BJT的V-I 特性曲线,iB=f(vBE) vCE=const,

4、(2) 当vCE1V时, vCB= vCE - vBE0,集电结已进入反偏状态,开始收集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。,(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。,1. 输入特性曲线(以共射极放大电路为例),共射极连接,饱和区:iC明显受vCE控制的区域,该区域内,一般vCE0.7V (硅管)。此时,发射结正偏,集电结正偏或反偏电压很小。,iC=f(vCE) iB=const,2. 输出特性曲线,输出特性曲线的三个区域:,截止区:iC接近零的区域,相当iB=0的曲线的下方。此时, vBE小于死区电压。,放大区:iC平行于vCE轴的区域,曲线基本平行

5、等距。此时,发射结正偏,集电结反偏。,4.1.3 BJT的V-I 特性曲线,(1) 共发射极直流电流放大系数 =(ICICEO)/IB IC / IB vCE=const,1. 电流放大系数,4.1.4 BJT的主要参数,与iC的关系曲线,(2) 共发射极交流电流放大 系数 = IC/IBvCE=const,1. 电流放大系数,(4) 共基极交流电流放大系数 =IC/IEvCB=const,当ICBO和ICEO很小时, 、 ,可以不加区分。,4.1.4 BJT的主要参数,(3) 共基极直流电流放大系数 =(ICICBO)/IEIC/IE,2. 极间反向电流,(1) 集电极基极间反向饱和电流IC

6、BO 发射极开路时,集电结的反向饱和电流。,4.1.4 BJT的主要参数,(2) 集电极发射极间的反向饱和电流ICEO,ICEO=(1+ )ICBO,4.1.4 BJT的主要参数,2. 极间反向电流,(1) 集电极最大允许电流ICM,(2) 集电极最大允许功率损耗PCM,PCM= ICVCE,3. 极限参数,4.1.4 BJT的主要参数,3. 极限参数,4.1.4 BJT的主要参数,(3) 反向击穿电压, V(BR)CBO发射极开路时的集电结反 向击穿电压。, V(BR) EBO集电极开路时发射结的反 向击穿电压。, V(BR)CEO基极开路时集电极和发射 极间的击穿电压。,几个击穿电压有如下

7、关系 V(BR)CBOV(BR)CEOV(BR) EBO,4.1.5 温度对BJT参数及特性的影响,(1) 温度对ICBO的影响:,温度每升高10,ICBO约增加一倍。,(2) 温度对 的影响:,温度每升高1, 值约增大0.5%1%。,(3) 温度对反向击穿电压V(BR)CBO、V(BR)CEO的影响:,温度升高时,V(BR)CBO和V(BR)CEO都会有所提高。,2. 温度对BJT特性曲线的影响:,1. 温度对BJT参数的影响,习 题,1、判断下列说法是否正确,用“”和“”表示判断结果填入空内。 (1)在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。( ) (2)因为N型半导

8、体的多子是自由电子,所以它带负电。( ) (3)PN结在无光照、无外加电压时,结电流为零。( ) (4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。 ( ),解:(1) (2) (3) (4),2、选择正确答案填入空内。 (1)PN结加正向电压时,空间电荷区将 。 A. 变窄 B. 基本不变 C. 变宽 (2)稳压管的稳压区是其工作在 。 A. 正向导通 B.反向截止 C.反向击穿 (3)当晶体管工作在放大区时,发射结电压和集电结电压应为 。 A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏 (4)工作在放大区的某三极管,如果当IB从12A增大到22A

9、时,IC从1mA变为2mA,那么它的约为 。 A. 83 B. 91 C. 100,解:(1)A (2)C (3) B (4) C,3、能否将1.5V的干电池以正向接法接到二极管两端?为什么?,解:不能。因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V时,管子会因电流过大而烧坏。,4、 现有两只稳压管,它们的稳定电压分别为6V和8V,正向导通电压为0.7V。试问: (1)若将它们串联相接,则可得到几种稳压值?各为多少? (2)若将它们并联相接,则又可得到几种稳压值?各为多少?,解:(1)两只稳压管串联时可得1.4V、6.7V、8.7V和14V等四种稳压值。 (2)两只稳压管并联时可

10、得0.7V和6V等两种稳压值。,5、 有两只晶体管,一只的200,ICEO200A;另一只的100,ICEO10A,其它参数大致相同。你认为应选用哪只管子?为什么?,解:选用100、ICBO10A的管子,因其适中、ICEO较小,因而温度稳定性较另一只管子好。,6、已知两只晶体管的电流放大系数分别为50和100,现测得放大电路中这两只管子两个电极的电流如图所示。分别求另一电极的电流,标出其实际方向,并在圆圈中画出管子。,6、测得放大电路中六只晶体管的直流电位如图所示。在圆圈中画出管子,并分别说明它们是硅管还是锗管。,7、某晶体管的输出特性曲线如图所示,其集电极最大耗散功率PCM200mW,试画出

11、它的过损耗区。,4.2 共射极放大电路的工作原理,4.2.1 基本共射极放大电路的组成,基本共射极放大电路,4.2.2 基本共射极放大电路的工作原理,1. 静态(直流工作状态),输入信号vi0时,放大电路的工作状态称为静态或直流工作状态。,直流通路,VCEQ=VCCICQRc,4.2.2 基本共射极放大电路的工作原理,2. 动态,输入正弦信号vs后,电路将处在动态工作情况。此时,BJT各极电流及电压都将在静态值的基础上随输入信号作相应的变化。,交流通路,4. 3 放大电路的分析方法,4.3.1 图解分析法,4.3.2 小信号模型分析法,1. 静态工作点的图解分析,2. 动态工作情况的图解分析,

12、3. 非线性失真的图解分析,4. 图解分析法的适用范围,1. BJT的H参数及小信号模型,2. 用H参数小信号模型分析基本共射极放大电路,3. 小信号模型分析法的适用范围,4.3.1 图解分析法,1. 静态工作点的图解分析,采用该方法分析静态工作点,必须已知三极管的输入输出特性曲线。,共射极放大电路,4.3.1 图解分析法,1. 静态工作点的图解分析, 列输入回路方程, 列输出回路方程(直流负载线) VCE=VCCiCRc, 首先,画出直流通路,直流通路, 在输出特性曲线上,作出直流负载线 VCE=VCCiCRc,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ。, 在输入特性曲线上,作

13、出直线 ,两线的交点即是Q点,得到IBQ。, 根据vs的波形,在BJT的输入特性曲线图上画出vBE 、 iB 的波形,2. 动态工作情况的图解分析, 根据iB的变化范围在输出特性曲线图上画出iC和vCE 的波形,2. 动态工作情况的图解分析, 共射极放大电路中的电压、电流波形,2. 动态工作情况的图解分析,3. 静态工作点对波形失真的影响,截止失真的波形,饱和失真的波形,3. 静态工作点对波形失真的影响,共射极放大电路,放大电路如图所示。已知BJT的 =80, Rb=300k , Rc=2k, VCC= +12V,求:,(1)放大电路的Q点。此时BJT工作在哪个区域?,(2)当Rb=100k时

14、,放大电路的Q点。此时BJT工作在哪个区域?(忽略BJT的饱和压降),解:(1),(2)当Rb=100k时,,静态工作点为Q(40A,3.2mA,5.6V),BJT工作在放大区。,其最小值也只能为0,即IC的最大电流为:,,所以BJT工作在饱和区。,VCE不可能为负值,,此时,Q(120uA,6mA,0V),,例题,4. 图解分析法的适用范围,适用于幅度较大而工作频率不太高的工作情况。,优点: 直观、形象。有助于建立和理解交、直流共存,静态和动态等重要概念;有助于理解正确选择电路参数、合理设置静态工作点的重要性。能全面地分析放大电路的静态、动态工作情况。,缺点: 不能分析工作频率较高时的电路工

15、作状态,也不能用来分析放大电路的输入电阻、输出电阻等动态性能指标。,1.交流负载线的画法,交流负载线的特点:必须通过静态工作点交流负载线的斜率由RL表示(RL=Rc/RL)交流负载线的画法(有两种):(1)先作出直流负载线,找出Q点; 作出一条斜率为RL的辅助线,然后过Q点作它的平行线即得。(此法为点斜式)(2)先求出UCE坐标的截距(通过方程UCC=UCE+ICRL) 连接Q点和UCC点即为交流负载线。(此法为两点式),例1:作出图(1)所示电路的交流负载线。已知特性曲线如图(2)所示,Ucc=12V,Rc=3千欧,RL=3千欧,Rb=280千欧。,解:(1)作出直流负载线,求出点Q。 (2

16、)求出点Ucc。Ucc=Uce+IcRL=6+1.5*2=9V (3)连接点Q和点Ucc即得交流负载线(图中黑线即为所求),4.3.2 小信号模型分析法,1. BJT的H参数及小信号模型,建立小信号模型的意义,建立小信号模型的思路,当放大电路的输入信号电压很小时,就可以把三极管小范围内的特性曲线近似地用直线来代替,从而可以把三极管这个非线性器件所组成的电路当作线性电路来处理。,由于三极管是非线性器件,这样就使得放大电路的分析非常困难。建立小信号模型,就是将非线性器件做线性化处理,从而简化放大电路的分析和设计。,把非线性元件晶体管所组成的放大电路等效成一个线性电路,就是放大电路的微变等效电路,然

17、后用线性电路的分析方法来分析,这种方法称为微变等效电路分析法。等效的条件是晶体管在小信号(微变量)情况下工作。这样就能在静态工作点附近的小范围内,用直线段近似地代替晶体管的特性曲线。,(1)基本思路,(2)晶体管微变等效电路,输入特性曲线在Q点附近的微小范围内可以认为是线性的。当uBE有一微小变化UBE时,基极电流变化IB,两者的比值称为三极管的动态输入电阻,用rbe表示,即:,微变等效电路法,输出特性曲线在放大区域内可认为呈水平线,集电极电流的微小变化IC仅与基极电流的微小变化IB有关,而与电压uCE无关,故集电极和发射极之间可等效为一个受ib控制的电流源,即:,(3)放大电路微变等效电路,

18、电压放大倍数,式中RL=RC/RL。当RL=(开路)时,输入电阻,Ri,输入电阻Ri的大小决定了放大电路从信号源吸取电流(输入电流)的大小。为了减轻信号源的负担,总希望Ri越大越好。另外,较大的输入电阻Ri,也可以降低信号源内阻Rs的影响,使放大电路获得较高的输入电压。在上式中由于RB比rbe大得多,Ri近似等于rbe.,输出电阻,对于负载而言,放大器的输出电阻Ro越小,负载电阻RL的变化对输出电压的影响就越小,表明放大器带负载能力越强,因此总希望Ro越小越好。,3. 小信号模型分析法的适用范围,放大电路的输入信号幅度较小,BJT工作在其VT特性曲线的线性范围(即放大区)内。H参数的值是在静态

19、工作点上求得的。所以,放大电路的动态性能与静态工作点参数值的大小及稳定性密切相关。,优点: 分析放大电路的动态性能指标(Av 、Ri和Ro等)非常方便,且适用于频率较高时的分析。,4.3.2 小信号模型分析法,缺点: 在BJT与放大电路的小信号等效电路中,电压、电流等电量及BJT的H参数均是针对变化量(交流量)而言的,不能用来分析计算静态工作点。,4.4 放大电路静态工作点的稳定问题,4.4.1 温度对静态工作点的影响,4.4.2 射极偏置电路,1. 基极分压式射极偏置电路,2. 含有双电源的射极偏置电路,3. 含有恒流源的射极偏置电路,4.4.1 温度对静态工作点的影响,4.1.6节讨论过,

20、温度上升时,BJT的反向电流ICBO、ICEO及电流放大系数或都会增大,而发射结正向压降VBE会减小。这些参数随温度的变化,都会使放大电路中的集电极静态电流ICQ随温度升高而增加(ICQ= IBQ+ ICEO) ,从而使Q点随温度变化。,要想使ICQ基本稳定不变,就要求在温度升高时,电路能自动地适当减小基极电流IBQ 。,4.4.2 射极偏置电路,(1)稳定工作点原理,目标:温度变化时,使IC维持恒定。,如果温度变化时,b点电位能基本不变,则可实现静态工作点的稳定。,T , IC, IE, VE、VB不变, VBE , IB,(反馈控制),1. 基极分压式射极偏置电路,(a) 原理电路 (b)

21、 直流通路,b点电位基本不变的条件:,I1 IBQ ,,此时,,VBQ与温度无关,VBQ VBEQ,Re取值越大,反馈控制作用越强,一般取 I1 =(510)IBQ , VBQ =35V,1. 基极分压式射极偏置电路,(1)稳定工作点原理,1. 基极分压式射极偏置电路,(2)放大电路指标分析,静态工作点,电压增益,画小信号等效电路,(2)放大电路指标分析,电压增益,输出回路:,输入回路:,电压增益:,画小信号等效电路,确定模型参数, 已知,求rbe,增益,(2)放大电路指标分析,(可作为公式用),输入电阻,则输入电阻,放大电路的输入电阻不包含信号源的内阻,(2)放大电路指标分析,输出电阻,输出

22、电阻:,求输出电阻的等效电路,其中:,(一般 ),(2)放大电路指标分析,(1)静态分析,(2)动态分析,例:图示电路(接CE),已知UCC=12V,RB1=20k,RB2=10k,RC=3k,RE=2k,RL=3k,=50。试估算静态工作点,并求电压放大倍数、输入电阻和输出电阻。,解:(1)用估算法计算静态工作点,(2)求电压放大倍数,(3)求输入电阻和输出电阻,2. 含有双电源的射极偏置电路,(1)阻容耦合,静态工作点,2. 含有双电源的射极偏置电路,(2)直接耦合,3. 含有恒流源的射极偏置电路,静态工作点由恒流源提供,静态分析,射极输出器,求电压放大倍数,动态分析,求输入电阻,求输出电

23、阻,射极输出器的特点: 电压放大倍数小于1,但约等于1,即电压跟随。 输入电阻较高。 输出电阻较低。 射极输出器的用途: 射极跟随器具有较高的输入电阻和较低的输出电阻,这是射极跟随器最突出的优点。射极跟随器常用作多级放大器的第一级或最末级,也可用于中间隔离级。用作输入级时,其高的输入电阻可以减轻信号源的负担,提高放大器的输入电压。用作输出级时,其低的输出电阻可以减小负载变化对输出电压的影响,并易于与低阻负载相匹配,向负载传送尽可能大的功率。,例:图示电路,已知UCC=12V,RB=200k,RE=2k,RL=3k,RS=100 ,=50。试估算静态工作点,并求电压放大倍数、输入电阻和输出电阻。

24、,解:(1)用估算法计算静态工作点,4.5 共集电极放大电路和共基极放大电路,4.5.1 共集电极放大电路,4.5.2 共基极放大电路,4.5.3 放大电路三种组态的比较,4.5.1 共集电极放大电路,1.静态分析,共集电极电路结构如图示,该电路也称为射极输出器,得,直流通路,小信号等效电路,4.5.1 共集电极放大电路,2.动态分析,交流通路,4.5.1 共集电极放大电路,2.动态分析,电压增益,输出回路:,输入回路:,电压增益:,其中,一般,,则电压增益接近于1,,电压跟随器,4.5.1 共集电极放大电路,2.动态分析,输入电阻,当,,,时,,输入电阻大,输出电阻,由电路列出方程,其中,则

25、输出电阻:,时,,输出电阻小,4.5.1 共集电极放大电路,2.动态分析,4.5.1 共集电极放大电路,4.5.2 共基极放大电路,1.静态工作点,直流通路与射极偏置电路相同,2.动态指标,电压增益,输出回路:,输入回路:,电压增益:,交流通路,小信号等效电路, 输入电阻, 输出电阻,2.动态指标,小信号等效电路,4.5.3 放大电路三种组态的比较,1.三种组态的判别,以输入、输出信号的位置为判断依据: 信号由基极输入,集电极输出共射极放大电路 信号由基极输入,发射极输出共集电极放大电路 信号由发射极输入,集电极输出共基极电路,2.三种组态的比较,3.三种组态的特点及用途,共射极放大电路: 电

26、压和电流增益都大于1,输入电阻在三种组态中居中,输出电阻与集电极电阻有很大关系。适用于低频情况下,作多级放大电路的中间级。 共集电极放大电路: 只有电流放大作用,没有电压放大,有电压跟随作用。在三种组态中,输入电阻最高,输出电阻最小,频率特性好。可用于输入级、输出级或缓冲级。 共基极放大电路: 只有电压放大作用,没有电流放大,有电流跟随作用,输入电阻小,输出电阻与集电极电阻有关。高频特性较好,常用于高频或宽频带低输入阻抗的场合,模拟集成电路中亦兼有电位移动的功能。,4.5.3 放大电路三种组态的比较,多级放大电路的耦合方式,多级放大电路的组成,阻容耦合放大电路,各极之间通过耦合电容及下级输入电

27、阻连接。优点:各级静态工作点互不影响,可以单独调整到合适位置;且不存在零点漂移问题。缺点:不能放大变化缓慢的信号和直流分量变化的信号;且由于需要大容量的耦合电容,因此不能在集成电路中采用。,1阻容耦合放大电路的特点,2阻容耦合放大电路分析,(1)静态分析:各级单独计算。,(2)动态分析 电压放大倍数等于各级电压放大倍数的乘积。,注意:计算前级的电压放大倍数时必须把后级的输入电阻考虑到前级的负载电阻之中。如计算第一级的电压放大倍数时,其负载电阻就是第二级的输入电阻。 输入电阻就是第一级的输入电阻。 输出电阻就是最后一级的输出电阻。,频率响应的概念,在放大电路的通频带中给出了频率特性的概念-,一、

28、频率响应的概念,这些统称放大电路的频率响应。,幅频特性偏离中频值的现象称为幅度频率失真; 相频特性偏离中频值的现象称为相位频率失真。,放大电路的幅频特性和相频特性,也称为频率响应。因放大电路对不同频率成分信号的增益不同,从而使输出波形产生失真,称为幅度频率失真,简称幅频失真。放大电路对不同频率成分信号的相移不同,从而使输出波形产生失真,称为相位频率失真,简称相频失真。幅频失真和相频失真是线性失真。,产生频率失真的原因是: 1.放大电路中存在电抗性元件,例如耦合电容、 旁路电容、分布电容、变压器、分布电感等;,2.三极管的()是频率的函数。 在研究频率特性时,三极管的低频小信号模型不再适用,而要

29、采用高频小信号模型。,3阻容耦合放大的频率特性和频率失真,中频段:电压放大倍数近似为常数。 低频段:耦合电容和发射极旁路电容的容抗增大,以致不可视为短路,因而造成电压放大倍数减小。 高频段:晶体管的结电容以及电路中的分布电容等的容抗减小,以致不可视为开路,也会使电压放大倍数降低。,除了电压放大倍数会随频率而改变外,在低频和高频段,输出信号对输入信号的相位移也要随频率而改变。所以在整个频率范围内,电压放大倍数和相位移都将是频率的函数。电压放大倍数与频率的函数关系称为幅频特性,相位移与频率的函数关系称为相频特性,二者统称为频率特性或频率响应。放大电路呈现带通特性。图中fH和fL为电压放大倍数下降到

30、中频段电压放大倍数的0.707倍时所对应的两个频率,分别称为上限频率和下限频率,其差值称为通频带。 一般情况下,放大电路的输入信号都是非正弦信号,其中包含有许多不同频率的谐波成分。由于放大电路对不同频率的正弦信号放大倍数不同,相位移也不一样,所以当输入信号为包含多种谐波分量的非正弦信号时,若谐波频率超出通频带,输出信号uo波形将产生失真。这种失真与放大电路的频率特性有关,故称为频率失真。,4.6 组合放大电路,4.6.1 共射共基放大电路,4.6.2 共集共集放大电路,4.6.1 共射共基放大电路,共射共基放大电路,4.6.1 共射共基放大电路,其中:,所以:,因为:,因此:,组合放大电路总的

31、电压增益等于组成它的各级单管放大电路电压增益的乘积。 前一级的输出电压是后一级的输入电压,后一级的输入电阻是前一级的负载电阻RL。,电压增益:,4.6.1 共射共基放大电路,输入电阻:,输出电阻:,Ro Rc2,T1、T2构成复合管,可等效为一个NPN管,(a) 原理图 (b)交流通路,4.6.2 共集共集放大电路,复合管的组成及类型,同一种导电类型的三极管构成复合管时,应将前一个管子的发射极接至后一只管子的基极;不同导电类型的三极管构成复合管时,应将前一只管子的集电极接至后一只管子的基极,以实现两次电流放大作用。 必须保证两只三极管均工作在放大状态。 两管复合后可等效为一只三极管,其导电类型

32、与T1相同。,4.6.2 共集共集放大电路,1. 复合管的主要特性,两只NPN型BJT组成的复合管,两只PNP型BJT组成的复合管,rberbe1 (1 1 ) rbe2,4.6.2 共集共集放大电路,1. 复合管的主要特性,PNP与NPN型BJT组成的复合管,NPN与PNP型BJT组成的复合管,rbe rbe1,4.6.2 共集共集放大电路,2. 共集共集放大电路的Av、 Ri 、Ro,式中 12 rberbe1(11)rbe2 RLRe/RL,RiRb/rbe(1 ) RL,4.7 放大电路的频率响应,4.7.1 单时间常数RC电路的频率响应,4.7.2 BJT的高频小信号模型及频率参数,

33、4.7.3 单级共射极放大电路的频率响应,4.7.4 单级共集电极和共基极放大电路的高频响应,4.7.5 多级放大电路的频率响应,研究放大电路的动态指标(主要是增益)随信号频率变化时的响应。,频率响应的概念,在放大电路的通频带中给出了频率特性的概念-,一、频率响应的概念,这些统称放大电路的频率响应。,幅频特性偏离中频值的现象称为幅度频率失真; 相频特性偏离中频值的现象称为相位频率失真。,放大电路的幅频特性和相频特性,也称为频率响应。因放大电路对不同频率成分信号的增益不同,从而使输出波形产生失真,称为幅度频率失真,简称幅频失真。放大电路对不同频率成分信号的相移不同,从而使输出波形产生失真,称为相

34、位频率失真,简称相频失真。幅频失真和相频失真是线性失真。,产生频率失真的原因是: 1.放大电路中存在电抗性元件,例如耦合电容、 旁路电容、分布电容、变压器、分布电感等;,2.三极管的()是频率的函数。 在研究频率特性时,三极管的低频小信号模型不再适用,而要采用高频小信号模型。,4.7.1 单时间常数RC电路的频率响应,1. RC低通电路的频率响应,(电路理论中的稳态分析),RC电路的电压增益(传递函数):,则,且令,又,电压增益的幅值(模),(幅频响应),电压增益的相角,(相频响应),增益频率函数,RC低通电路,最大误差 -3dB,频率响应曲线描述,1. RC低通电路的频率响应,最大误差 5.

35、7,2. RC高通电路的频率响应,RC电路的电压增益:,输出超前输入,RC高通电路,4.7.2 BJT的高频小信号模型及频率参数,1. BJT的高频小信号模型,模型的引出,rbe-发射结电阻re归算 到基极回路的电阻。,-发射结电容,-集电结电阻,-集电结电容,rbb -基区的体电阻,b是假想的基区内的一个点。,互导,BJT的高频小信号模型,三极管物理模型,简化模型,混合型高频小信号模型。,1. BJT的高频小信号模型,忽略rbc和rce,高频小信号简化电路,在型小信号模型中,因存在Cbc 对求解不便,可通过单向化处理加以变换。可以用输入侧的C 和输出侧的C两个电容去分别代替Cb c ,如右图

36、所示。,高频小信号模型电路,1. BJT的高频小信号模型,由于C C , 可以忽略,所以可简化为下图,其中C =Cbe+ C 。,简化高频小信号电路,其中:,当集电极接上RC时,2. BJT高频小信号模型中元件参数值的获得,低频时,混合模型与H参数模型等价,又因为,2. BJT高频小信号模型中元件参数值的获得,低频时,混合模型与H参数模型等价,3. BJT的频率参数,由H参数可知,即,根据混合模型得:,低频时,所以,令,的幅频响应:,共发射极截止频率,特征频率,共基极截止频率,3. BJT的频率参数,的相频响应:,f(10)fffT,4.7.3 单管共射放大器的频率响应,一、 全频段小信号电路模型 二、 中频段电压放大倍数Ausm 三、 低频段电压放大倍数Ausm 四、 高频段电压放大倍数Ausm 五、 完整的频率响应曲线,一、全频段小信号电路模型,对于下图(左)所示的共发射极接法的基本放大电路,分析其频率响应,需画出放大电路从低频到高频的全频段小信号

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论